ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reu6i Unicode version

Theorem reu6i 2951
Description: A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.)
Assertion
Ref Expression
reu6i  |-  ( ( B  e.  A  /\  A. x  e.  A  (
ph 
<->  x  =  B ) )  ->  E! x  e.  A  ph )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem reu6i
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqeq2 2203 . . . . 5  |-  ( y  =  B  ->  (
x  =  y  <->  x  =  B ) )
21bibi2d 232 . . . 4  |-  ( y  =  B  ->  (
( ph  <->  x  =  y
)  <->  ( ph  <->  x  =  B ) ) )
32ralbidv 2494 . . 3  |-  ( y  =  B  ->  ( A. x  e.  A  ( ph  <->  x  =  y
)  <->  A. x  e.  A  ( ph  <->  x  =  B
) ) )
43rspcev 2864 . 2  |-  ( ( B  e.  A  /\  A. x  e.  A  (
ph 
<->  x  =  B ) )  ->  E. y  e.  A  A. x  e.  A  ( ph  <->  x  =  y ) )
5 reu6 2949 . 2  |-  ( E! x  e.  A  ph  <->  E. y  e.  A  A. x  e.  A  ( ph 
<->  x  =  y ) )
64, 5sylibr 134 1  |-  ( ( B  e.  A  /\  A. x  e.  A  (
ph 
<->  x  =  B ) )  ->  E! x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   E!wreu 2474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-v 2762
This theorem is referenced by:  eqreu  2952  riota5f  5898  negeu  8210  creur  8978  creui  8979
  Copyright terms: Public domain W3C validator