| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reu6i | Unicode version | ||
| Description: A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| reu6i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2217 |
. . . . 5
| |
| 2 | 1 | bibi2d 232 |
. . . 4
|
| 3 | 2 | ralbidv 2508 |
. . 3
|
| 4 | 3 | rspcev 2884 |
. 2
|
| 5 | reu6 2969 |
. 2
| |
| 6 | 4, 5 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-v 2778 |
| This theorem is referenced by: eqreu 2972 riota5f 5947 negeu 8298 creur 9067 creui 9068 reuccatpfxs1 11238 |
| Copyright terms: Public domain | W3C validator |