| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impib | Unicode version | ||
| Description: Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.) |
| Ref | Expression |
|---|---|
| 3impib.1 |
|
| Ref | Expression |
|---|---|
| 3impib |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impib.1 |
. . 3
| |
| 2 | 1 | expd 258 |
. 2
|
| 3 | 2 | 3imp 1196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: mob 2955 eqreu 2965 iotam 5263 funimaexglem 5357 ssimaexg 5641 funopdmsn 5764 rbropap 6329 dfsmo2 6373 3ecoptocl 6711 distrnq0 7572 addassnq0 7575 uzind 9484 fzind 9488 fnn0ind 9489 xltnegi 9957 facwordi 10885 shftvalg 11147 shftval4g 11148 mulgcd 12337 coprmdvds1 12413 pcfac 12673 mgmcl 13191 mhmlin 13299 mhmmulg 13499 issubg2m 13525 nsgbi 13540 srgmulgass 13751 dvdsrtr 13863 issubrng2 13972 issubrg2 14003 domnmuln0 14035 inopn 14475 basis1 14519 cnmpt2t 14765 cnmpt22 14766 cnmptcom 14770 xmeteq0 14831 sincosq1sgn 15298 sincosq2sgn 15299 sincosq3sgn 15300 sincosq4sgn 15301 speano5 15880 |
| Copyright terms: Public domain | W3C validator |