| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impib | Unicode version | ||
| Description: Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.) |
| Ref | Expression |
|---|---|
| 3impib.1 |
|
| Ref | Expression |
|---|---|
| 3impib |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impib.1 |
. . 3
| |
| 2 | 1 | expd 258 |
. 2
|
| 3 | 2 | 3imp 1196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: mob 2962 eqreu 2972 iotam 5282 funimaexglem 5376 ssimaexg 5664 funopdmsn 5787 rbropap 6352 dfsmo2 6396 3ecoptocl 6734 distrnq0 7607 addassnq0 7610 uzind 9519 fzind 9523 fnn0ind 9524 xltnegi 9992 facwordi 10922 shftvalg 11262 shftval4g 11263 mulgcd 12452 coprmdvds1 12528 pcfac 12788 mgmcl 13306 mhmlin 13414 mhmmulg 13614 issubg2m 13640 nsgbi 13655 srgmulgass 13866 dvdsrtr 13978 issubrng2 14087 issubrg2 14118 domnmuln0 14150 inopn 14590 basis1 14634 cnmpt2t 14880 cnmpt22 14881 cnmptcom 14885 xmeteq0 14946 sincosq1sgn 15413 sincosq2sgn 15414 sincosq3sgn 15415 sincosq4sgn 15416 speano5 16079 |
| Copyright terms: Public domain | W3C validator |