| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impib | Unicode version | ||
| Description: Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.) |
| Ref | Expression |
|---|---|
| 3impib.1 |
|
| Ref | Expression |
|---|---|
| 3impib |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impib.1 |
. . 3
| |
| 2 | 1 | expd 258 |
. 2
|
| 3 | 2 | 3imp 1195 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: mob 2946 eqreu 2956 iotam 5250 funimaexglem 5341 ssimaexg 5623 rbropap 6301 dfsmo2 6345 3ecoptocl 6683 distrnq0 7526 addassnq0 7529 uzind 9437 fzind 9441 fnn0ind 9442 xltnegi 9910 facwordi 10832 shftvalg 11001 shftval4g 11002 mulgcd 12183 coprmdvds1 12259 pcfac 12519 mgmcl 13002 mhmlin 13099 mhmmulg 13293 issubg2m 13319 nsgbi 13334 srgmulgass 13545 dvdsrtr 13657 issubrng2 13766 issubrg2 13797 domnmuln0 13829 inopn 14239 basis1 14283 cnmpt2t 14529 cnmpt22 14530 cnmptcom 14534 xmeteq0 14595 sincosq1sgn 15062 sincosq2sgn 15063 sincosq3sgn 15064 sincosq4sgn 15065 speano5 15590 |
| Copyright terms: Public domain | W3C validator |