| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impib | Unicode version | ||
| Description: Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.) |
| Ref | Expression |
|---|---|
| 3impib.1 |
|
| Ref | Expression |
|---|---|
| 3impib |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impib.1 |
. . 3
| |
| 2 | 1 | expd 258 |
. 2
|
| 3 | 2 | 3imp 1195 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: mob 2954 eqreu 2964 iotam 5262 funimaexglem 5356 ssimaexg 5640 funopdmsn 5763 rbropap 6328 dfsmo2 6372 3ecoptocl 6710 distrnq0 7571 addassnq0 7574 uzind 9483 fzind 9487 fnn0ind 9488 xltnegi 9956 facwordi 10883 shftvalg 11118 shftval4g 11119 mulgcd 12308 coprmdvds1 12384 pcfac 12644 mgmcl 13162 mhmlin 13270 mhmmulg 13470 issubg2m 13496 nsgbi 13511 srgmulgass 13722 dvdsrtr 13834 issubrng2 13943 issubrg2 13974 domnmuln0 14006 inopn 14446 basis1 14490 cnmpt2t 14736 cnmpt22 14737 cnmptcom 14741 xmeteq0 14802 sincosq1sgn 15269 sincosq2sgn 15270 sincosq3sgn 15271 sincosq4sgn 15272 speano5 15842 |
| Copyright terms: Public domain | W3C validator |