| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impib | Unicode version | ||
| Description: Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.) |
| Ref | Expression |
|---|---|
| 3impib.1 |
|
| Ref | Expression |
|---|---|
| 3impib |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impib.1 |
. . 3
| |
| 2 | 1 | expd 258 |
. 2
|
| 3 | 2 | 3imp 1217 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: mob 2985 eqreu 2995 iotam 5309 funimaexglem 5403 ssimaexg 5695 funopdmsn 5818 rbropap 6387 dfsmo2 6431 3ecoptocl 6769 distrnq0 7642 addassnq0 7645 uzind 9554 fzind 9558 fnn0ind 9559 xltnegi 10027 facwordi 10957 shftvalg 11342 shftval4g 11343 mulgcd 12532 coprmdvds1 12608 pcfac 12868 mgmcl 13387 mhmlin 13495 mhmmulg 13695 issubg2m 13721 nsgbi 13736 srgmulgass 13947 dvdsrtr 14059 issubrng2 14168 issubrg2 14199 domnmuln0 14231 inopn 14671 basis1 14715 cnmpt2t 14961 cnmpt22 14962 cnmptcom 14966 xmeteq0 15027 sincosq1sgn 15494 sincosq2sgn 15495 sincosq3sgn 15496 sincosq4sgn 15497 speano5 16265 |
| Copyright terms: Public domain | W3C validator |