| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsbc1 | GIF version | ||
| Description: Substitution for the left-hand side in an equality. Class version of eqsb1 2308. (Contributed by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| eqsbc1 | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq 2999 | . 2 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝑥 = 𝐵 ↔ [𝐴 / 𝑥]𝑥 = 𝐵)) | |
| 2 | eqeq1 2211 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 = 𝐵 ↔ 𝐴 = 𝐵)) | |
| 3 | sbsbc 3001 | . . 3 ⊢ ([𝑦 / 𝑥]𝑥 = 𝐵 ↔ [𝑦 / 𝑥]𝑥 = 𝐵) | |
| 4 | eqsb1 2308 | . . 3 ⊢ ([𝑦 / 𝑥]𝑥 = 𝐵 ↔ 𝑦 = 𝐵) | |
| 5 | 3, 4 | bitr3i 186 | . 2 ⊢ ([𝑦 / 𝑥]𝑥 = 𝐵 ↔ 𝑦 = 𝐵) |
| 6 | 1, 2, 5 | vtoclbg 2833 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1372 [wsb 1784 ∈ wcel 2175 [wsbc 2997 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-sbc 2998 |
| This theorem is referenced by: sbceqal 3053 eqsbc2 3058 |
| Copyright terms: Public domain | W3C validator |