Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqsbc1 | GIF version |
Description: Substitution for the left-hand side in an equality. Class version of eqsb1 2269. (Contributed by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
eqsbc1 | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq 2952 | . 2 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝑥 = 𝐵 ↔ [𝐴 / 𝑥]𝑥 = 𝐵)) | |
2 | eqeq1 2172 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 = 𝐵 ↔ 𝐴 = 𝐵)) | |
3 | sbsbc 2954 | . . 3 ⊢ ([𝑦 / 𝑥]𝑥 = 𝐵 ↔ [𝑦 / 𝑥]𝑥 = 𝐵) | |
4 | eqsb1 2269 | . . 3 ⊢ ([𝑦 / 𝑥]𝑥 = 𝐵 ↔ 𝑦 = 𝐵) | |
5 | 3, 4 | bitr3i 185 | . 2 ⊢ ([𝑦 / 𝑥]𝑥 = 𝐵 ↔ 𝑦 = 𝐵) |
6 | 1, 2, 5 | vtoclbg 2786 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 [wsb 1750 ∈ wcel 2136 [wsbc 2950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-sbc 2951 |
This theorem is referenced by: sbceqal 3005 eqsbc2 3010 |
Copyright terms: Public domain | W3C validator |