ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsnm Unicode version

Theorem eqsnm 3742
Description: Two ways to express that an inhabited set equals a singleton. (Contributed by Jim Kingdon, 11-Aug-2018.)
Assertion
Ref Expression
eqsnm  |-  ( E. x  x  e.  A  ->  ( A  =  { B }  <->  A. x  e.  A  x  =  B )
)
Distinct variable groups:    x, A    x, B

Proof of Theorem eqsnm
StepHypRef Expression
1 sssnm 3741 . 2  |-  ( E. x  x  e.  A  ->  ( A  C_  { B } 
<->  A  =  { B } ) )
2 dfss3 3137 . . 3  |-  ( A 
C_  { B }  <->  A. x  e.  A  x  e.  { B }
)
3 velsn 3600 . . . 4  |-  ( x  e.  { B }  <->  x  =  B )
43ralbii 2476 . . 3  |-  ( A. x  e.  A  x  e.  { B }  <->  A. x  e.  A  x  =  B )
52, 4bitri 183 . 2  |-  ( A 
C_  { B }  <->  A. x  e.  A  x  =  B )
61, 5bitr3di 194 1  |-  ( E. x  x  e.  A  ->  ( A  =  { B }  <->  A. x  e.  A  x  =  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348   E.wex 1485    e. wcel 2141   A.wral 2448    C_ wss 3121   {csn 3583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-in 3127  df-ss 3134  df-sn 3589
This theorem is referenced by:  nninfall  14042
  Copyright terms: Public domain W3C validator