ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsnm Unicode version

Theorem eqsnm 3833
Description: Two ways to express that an inhabited set equals a singleton. (Contributed by Jim Kingdon, 11-Aug-2018.)
Assertion
Ref Expression
eqsnm  |-  ( E. x  x  e.  A  ->  ( A  =  { B }  <->  A. x  e.  A  x  =  B )
)
Distinct variable groups:    x, A    x, B

Proof of Theorem eqsnm
StepHypRef Expression
1 sssnm 3832 . 2  |-  ( E. x  x  e.  A  ->  ( A  C_  { B } 
<->  A  =  { B } ) )
2 dfss3 3213 . . 3  |-  ( A 
C_  { B }  <->  A. x  e.  A  x  e.  { B }
)
3 velsn 3683 . . . 4  |-  ( x  e.  { B }  <->  x  =  B )
43ralbii 2536 . . 3  |-  ( A. x  e.  A  x  e.  { B }  <->  A. x  e.  A  x  =  B )
52, 4bitri 184 . 2  |-  ( A 
C_  { B }  <->  A. x  e.  A  x  =  B )
61, 5bitr3di 195 1  |-  ( E. x  x  e.  A  ->  ( A  =  { B }  <->  A. x  e.  A  x  =  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508    C_ wss 3197   {csn 3666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-in 3203  df-ss 3210  df-sn 3672
This theorem is referenced by:  01eq0ring  14153  nninfall  16375
  Copyright terms: Public domain W3C validator