ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsnm Unicode version

Theorem eqsnm 3785
Description: Two ways to express that an inhabited set equals a singleton. (Contributed by Jim Kingdon, 11-Aug-2018.)
Assertion
Ref Expression
eqsnm  |-  ( E. x  x  e.  A  ->  ( A  =  { B }  <->  A. x  e.  A  x  =  B )
)
Distinct variable groups:    x, A    x, B

Proof of Theorem eqsnm
StepHypRef Expression
1 sssnm 3784 . 2  |-  ( E. x  x  e.  A  ->  ( A  C_  { B } 
<->  A  =  { B } ) )
2 dfss3 3173 . . 3  |-  ( A 
C_  { B }  <->  A. x  e.  A  x  e.  { B }
)
3 velsn 3639 . . . 4  |-  ( x  e.  { B }  <->  x  =  B )
43ralbii 2503 . . 3  |-  ( A. x  e.  A  x  e.  { B }  <->  A. x  e.  A  x  =  B )
52, 4bitri 184 . 2  |-  ( A 
C_  { B }  <->  A. x  e.  A  x  =  B )
61, 5bitr3di 195 1  |-  ( E. x  x  e.  A  ->  ( A  =  { B }  <->  A. x  e.  A  x  =  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   E.wex 1506    e. wcel 2167   A.wral 2475    C_ wss 3157   {csn 3622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-in 3163  df-ss 3170  df-sn 3628
This theorem is referenced by:  01eq0ring  13745  nninfall  15653
  Copyright terms: Public domain W3C validator