ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  01eq0ring Unicode version

Theorem 01eq0ring 14147
Description: If the zero and the identity element of a ring are the same, the ring is the zero ring. (Contributed by AV, 16-Apr-2019.) (Proof shortened by SN, 23-Feb-2025.)
Hypotheses
Ref Expression
0ring.b  |-  B  =  ( Base `  R
)
0ring.0  |-  .0.  =  ( 0g `  R )
0ring01eq.1  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
01eq0ring  |-  ( ( R  e.  Ring  /\  .0.  =  .1.  )  ->  B  =  {  .0.  } )

Proof of Theorem 01eq0ring
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqcom 2231 . 2  |-  (  .0.  =  .1.  <->  .1.  =  .0.  )
2 0ring.b . . . . 5  |-  B  =  ( Base `  R
)
3 0ring.0 . . . . 5  |-  .0.  =  ( 0g `  R )
42, 3ring0cl 13979 . . . 4  |-  ( R  e.  Ring  ->  .0.  e.  B )
5 elex2 2816 . . . 4  |-  (  .0. 
e.  B  ->  E. x  x  e.  B )
64, 5syl 14 . . 3  |-  ( R  e.  Ring  ->  E. x  x  e.  B )
74adantr 276 . . . . . 6  |-  ( ( R  e.  Ring  /\  x  e.  B )  ->  .0.  e.  B )
8 0ring01eq.1 . . . . . . 7  |-  .1.  =  ( 1r `  R )
92, 8, 3ring1eq0 14006 . . . . . 6  |-  ( ( R  e.  Ring  /\  x  e.  B  /\  .0.  e.  B )  ->  (  .1.  =  .0.  ->  x  =  .0.  ) )
107, 9mpd3an3 1372 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  B )  ->  (  .1.  =  .0.  ->  x  =  .0.  ) )
1110impancom 260 . . . 4  |-  ( ( R  e.  Ring  /\  .1.  =  .0.  )  ->  (
x  e.  B  ->  x  =  .0.  )
)
1211ralrimiv 2602 . . 3  |-  ( ( R  e.  Ring  /\  .1.  =  .0.  )  ->  A. x  e.  B  x  =  .0.  )
13 eqsnm 3832 . . . 4  |-  ( E. x  x  e.  B  ->  ( B  =  {  .0.  }  <->  A. x  e.  B  x  =  .0.  )
)
1413biimpar 297 . . 3  |-  ( ( E. x  x  e.  B  /\  A. x  e.  B  x  =  .0.  )  ->  B  =  {  .0.  } )
156, 12, 14syl2an2r 597 . 2  |-  ( ( R  e.  Ring  /\  .1.  =  .0.  )  ->  B  =  {  .0.  } )
161, 15sylan2b 287 1  |-  ( ( R  e.  Ring  /\  .0.  =  .1.  )  ->  B  =  {  .0.  } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508   {csn 3666   ` cfv 5317   Basecbs 13027   0gc0g 13284   1rcur 13917   Ringcrg 13954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-mgp 13879  df-ur 13918  df-ring 13956
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator