ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  01eq0ring Unicode version

Theorem 01eq0ring 13922
Description: If the zero and the identity element of a ring are the same, the ring is the zero ring. (Contributed by AV, 16-Apr-2019.) (Proof shortened by SN, 23-Feb-2025.)
Hypotheses
Ref Expression
0ring.b  |-  B  =  ( Base `  R
)
0ring.0  |-  .0.  =  ( 0g `  R )
0ring01eq.1  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
01eq0ring  |-  ( ( R  e.  Ring  /\  .0.  =  .1.  )  ->  B  =  {  .0.  } )

Proof of Theorem 01eq0ring
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqcom 2206 . 2  |-  (  .0.  =  .1.  <->  .1.  =  .0.  )
2 0ring.b . . . . 5  |-  B  =  ( Base `  R
)
3 0ring.0 . . . . 5  |-  .0.  =  ( 0g `  R )
42, 3ring0cl 13754 . . . 4  |-  ( R  e.  Ring  ->  .0.  e.  B )
5 elex2 2787 . . . 4  |-  (  .0. 
e.  B  ->  E. x  x  e.  B )
64, 5syl 14 . . 3  |-  ( R  e.  Ring  ->  E. x  x  e.  B )
74adantr 276 . . . . . 6  |-  ( ( R  e.  Ring  /\  x  e.  B )  ->  .0.  e.  B )
8 0ring01eq.1 . . . . . . 7  |-  .1.  =  ( 1r `  R )
92, 8, 3ring1eq0 13781 . . . . . 6  |-  ( ( R  e.  Ring  /\  x  e.  B  /\  .0.  e.  B )  ->  (  .1.  =  .0.  ->  x  =  .0.  ) )
107, 9mpd3an3 1350 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  B )  ->  (  .1.  =  .0.  ->  x  =  .0.  ) )
1110impancom 260 . . . 4  |-  ( ( R  e.  Ring  /\  .1.  =  .0.  )  ->  (
x  e.  B  ->  x  =  .0.  )
)
1211ralrimiv 2577 . . 3  |-  ( ( R  e.  Ring  /\  .1.  =  .0.  )  ->  A. x  e.  B  x  =  .0.  )
13 eqsnm 3795 . . . 4  |-  ( E. x  x  e.  B  ->  ( B  =  {  .0.  }  <->  A. x  e.  B  x  =  .0.  )
)
1413biimpar 297 . . 3  |-  ( ( E. x  x  e.  B  /\  A. x  e.  B  x  =  .0.  )  ->  B  =  {  .0.  } )
156, 12, 14syl2an2r 595 . 2  |-  ( ( R  e.  Ring  /\  .1.  =  .0.  )  ->  B  =  {  .0.  } )
161, 15sylan2b 287 1  |-  ( ( R  e.  Ring  /\  .0.  =  .1.  )  ->  B  =  {  .0.  } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372   E.wex 1514    e. wcel 2175   A.wral 2483   {csn 3632   ` cfv 5270   Basecbs 12803   0gc0g 13059   1rcur 13692   Ringcrg 13729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-ndx 12806  df-slot 12807  df-base 12809  df-sets 12810  df-plusg 12893  df-mulr 12894  df-0g 13061  df-mgm 13159  df-sgrp 13205  df-mnd 13220  df-grp 13306  df-minusg 13307  df-mgp 13654  df-ur 13693  df-ring 13731
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator