Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > nninfall | Unicode version |
Description: Given a decidable predicate on ℕ∞, showing it holds for natural numbers and the point at infinity suffices to show it holds everywhere. The sense in which is a decidable predicate is that it assigns a value of either or (which can be thought of as false and true) to every element of ℕ∞. Lemma 3.5 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 1-Aug-2022.) |
Ref | Expression |
---|---|
nninfall.q | ℕ∞ |
nninfall.inf | |
nninfall.n |
Ref | Expression |
---|---|
nninfall | ℕ∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1n0 6400 | . . . . 5 | |
2 | 1 | nesymi 2382 | . . . 4 |
3 | simplr 520 | . . . . . . . . . . 11 ℕ∞ ℕ∞ | |
4 | nninff 7087 | . . . . . . . . . . . 12 ℕ∞ | |
5 | 4 | ffnd 5338 | . . . . . . . . . . 11 ℕ∞ |
6 | 3, 5 | syl 14 | . . . . . . . . . 10 ℕ∞ |
7 | nninfall.q | . . . . . . . . . . . . . . 15 ℕ∞ | |
8 | 7 | ad2antrr 480 | . . . . . . . . . . . . . 14 ℕ∞ ℕ∞ |
9 | nninfall.inf | . . . . . . . . . . . . . . 15 | |
10 | 9 | ad2antrr 480 | . . . . . . . . . . . . . 14 ℕ∞ |
11 | nninfall.n | . . . . . . . . . . . . . . 15 | |
12 | 11 | ad2antrr 480 | . . . . . . . . . . . . . 14 ℕ∞ |
13 | simpr 109 | . . . . . . . . . . . . . 14 ℕ∞ | |
14 | 8, 10, 12, 3, 13 | nninfalllem1 13888 | . . . . . . . . . . . . 13 ℕ∞ |
15 | eqeq1 2172 | . . . . . . . . . . . . . . 15 | |
16 | 15 | ralrn 5623 | . . . . . . . . . . . . . 14 |
17 | 3, 5, 16 | 3syl 17 | . . . . . . . . . . . . 13 ℕ∞ |
18 | 14, 17 | mpbird 166 | . . . . . . . . . . . 12 ℕ∞ |
19 | peano1 4571 | . . . . . . . . . . . . . . . 16 | |
20 | elex2 2742 | . . . . . . . . . . . . . . . 16 | |
21 | 19, 20 | ax-mp 5 | . . . . . . . . . . . . . . 15 |
22 | fdm 5343 | . . . . . . . . . . . . . . . . 17 | |
23 | 22 | eleq2d 2236 | . . . . . . . . . . . . . . . 16 |
24 | 23 | exbidv 1813 | . . . . . . . . . . . . . . 15 |
25 | 21, 24 | mpbiri 167 | . . . . . . . . . . . . . 14 |
26 | dmmrnm 4823 | . . . . . . . . . . . . . . 15 | |
27 | eqsnm 3735 | . . . . . . . . . . . . . . 15 | |
28 | 26, 27 | sylbi 120 | . . . . . . . . . . . . . 14 |
29 | 25, 28 | syl 14 | . . . . . . . . . . . . 13 |
30 | 3, 4, 29 | 3syl 17 | . . . . . . . . . . . 12 ℕ∞ |
31 | 18, 30 | mpbird 166 | . . . . . . . . . . 11 ℕ∞ |
32 | eqimss 3196 | . . . . . . . . . . 11 | |
33 | 31, 32 | syl 14 | . . . . . . . . . 10 ℕ∞ |
34 | df-f 5192 | . . . . . . . . . 10 | |
35 | 6, 33, 34 | sylanbrc 414 | . . . . . . . . 9 ℕ∞ |
36 | 1onn 6488 | . . . . . . . . . 10 | |
37 | fconst2g 5700 | . . . . . . . . . 10 | |
38 | 36, 37 | ax-mp 5 | . . . . . . . . 9 |
39 | 35, 38 | sylib 121 | . . . . . . . 8 ℕ∞ |
40 | fconstmpt 4651 | . . . . . . . 8 | |
41 | 39, 40 | eqtrdi 2215 | . . . . . . 7 ℕ∞ |
42 | 41 | fveq2d 5490 | . . . . . 6 ℕ∞ |
43 | 42, 13, 10 | 3eqtr3d 2206 | . . . . 5 ℕ∞ |
44 | 43 | ex 114 | . . . 4 ℕ∞ |
45 | 2, 44 | mtoi 654 | . . 3 ℕ∞ |
46 | elmapi 6636 | . . . . . . 7 ℕ∞ ℕ∞ | |
47 | 7, 46 | syl 14 | . . . . . 6 ℕ∞ |
48 | 47 | ffvelrnda 5620 | . . . . 5 ℕ∞ |
49 | elpri 3599 | . . . . . 6 | |
50 | df2o3 6398 | . . . . . 6 | |
51 | 49, 50 | eleq2s 2261 | . . . . 5 |
52 | 48, 51 | syl 14 | . . . 4 ℕ∞ |
53 | 52 | orcomd 719 | . . 3 ℕ∞ |
54 | 45, 53 | ecased 1339 | . 2 ℕ∞ |
55 | 54 | ralrimiva 2539 | 1 ℕ∞ |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 698 wceq 1343 wex 1480 wcel 2136 wral 2444 wss 3116 c0 3409 cif 3520 csn 3576 cpr 3577 cmpt 4043 com 4567 cxp 4602 cdm 4604 crn 4605 wfn 5183 wf 5184 cfv 5188 (class class class)co 5842 c1o 6377 c2o 6378 cmap 6614 ℕ∞xnninf 7084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1o 6384 df-2o 6385 df-map 6616 df-nninf 7085 |
This theorem is referenced by: nninfsel 13897 nninffeq 13900 |
Copyright terms: Public domain | W3C validator |