Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfall Unicode version

Theorem nninfall 16081
Description: Given a decidable predicate on ℕ, showing it holds for natural numbers and the point at infinity suffices to show it holds everywhere. The sense in which  Q is a decidable predicate is that it assigns a value of either  (/) or  1o (which can be thought of as false and true) to every element of ℕ. Lemma 3.5 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 1-Aug-2022.)
Hypotheses
Ref Expression
nninfall.q  |-  ( ph  ->  Q  e.  ( 2o 
^m ) )
nninfall.inf  |-  ( ph  ->  ( Q `  (
x  e.  om  |->  1o ) )  =  1o )
nninfall.n  |-  ( ph  ->  A. n  e.  om  ( Q `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o )
Assertion
Ref Expression
nninfall  |-  ( ph  ->  A. p  e.  ( Q `  p
)  =  1o )
Distinct variable groups:    Q, n, i   
n, p, i, ph
Allowed substitution hints:    ph( x)    Q( x, p)

Proof of Theorem nninfall
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1n0 6530 . . . . 5  |-  1o  =/=  (/)
21nesymi 2423 . . . 4  |-  -.  (/)  =  1o
3 simplr 528 . . . . . . . . . . 11  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  p  e. )
4 nninff 7238 . . . . . . . . . . . 12  |-  ( p  e.  ->  p : om --> 2o )
54ffnd 5435 . . . . . . . . . . 11  |-  ( p  e.  ->  p  Fn  om )
63, 5syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  p  Fn  om )
7 nninfall.q . . . . . . . . . . . . . . 15  |-  ( ph  ->  Q  e.  ( 2o 
^m ) )
87ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  Q  e.  ( 2o  ^m ) )
9 nninfall.inf . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( Q `  (
x  e.  om  |->  1o ) )  =  1o )
109ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  ( Q `  ( x  e.  om  |->  1o ) )  =  1o )
11 nninfall.n . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. n  e.  om  ( Q `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o )
1211ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  A. n  e.  om  ( Q `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o )
13 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  ( Q `  p )  =  (/) )
148, 10, 12, 3, 13nninfalllem1 16080 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  A. n  e.  om  ( p `  n
)  =  1o )
15 eqeq1 2213 . . . . . . . . . . . . . . 15  |-  ( a  =  ( p `  n )  ->  (
a  =  1o  <->  ( p `  n )  =  1o ) )
1615ralrn 5730 . . . . . . . . . . . . . 14  |-  ( p  Fn  om  ->  ( A. a  e.  ran  p  a  =  1o  <->  A. n  e.  om  (
p `  n )  =  1o ) )
173, 5, 163syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  ( A. a  e.  ran  p  a  =  1o  <->  A. n  e.  om  ( p `  n
)  =  1o ) )
1814, 17mpbird 167 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  A. a  e.  ran  p  a  =  1o )
19 peano1 4649 . . . . . . . . . . . . . . . 16  |-  (/)  e.  om
20 elex2 2790 . . . . . . . . . . . . . . . 16  |-  ( (/)  e.  om  ->  E. b 
b  e.  om )
2119, 20ax-mp 5 . . . . . . . . . . . . . . 15  |-  E. b 
b  e.  om
22 fdm 5440 . . . . . . . . . . . . . . . . 17  |-  ( p : om --> 2o  ->  dom  p  =  om )
2322eleq2d 2276 . . . . . . . . . . . . . . . 16  |-  ( p : om --> 2o  ->  ( b  e.  dom  p  <->  b  e.  om ) )
2423exbidv 1849 . . . . . . . . . . . . . . 15  |-  ( p : om --> 2o  ->  ( E. b  b  e. 
dom  p  <->  E. b 
b  e.  om )
)
2521, 24mpbiri 168 . . . . . . . . . . . . . 14  |-  ( p : om --> 2o  ->  E. b  b  e.  dom  p )
26 dmmrnm 4905 . . . . . . . . . . . . . . 15  |-  ( E. b  b  e.  dom  p 
<->  E. a  a  e. 
ran  p )
27 eqsnm 3801 . . . . . . . . . . . . . . 15  |-  ( E. a  a  e.  ran  p  ->  ( ran  p  =  { 1o }  <->  A. a  e.  ran  p  a  =  1o ) )
2826, 27sylbi 121 . . . . . . . . . . . . . 14  |-  ( E. b  b  e.  dom  p  ->  ( ran  p  =  { 1o }  <->  A. a  e.  ran  p  a  =  1o ) )
2925, 28syl 14 . . . . . . . . . . . . 13  |-  ( p : om --> 2o  ->  ( ran  p  =  { 1o }  <->  A. a  e.  ran  p  a  =  1o ) )
303, 4, 293syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  ( ran  p  =  { 1o }  <->  A. a  e.  ran  p  a  =  1o ) )
3118, 30mpbird 167 . . . . . . . . . . 11  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  ran  p  =  { 1o } )
32 eqimss 3251 . . . . . . . . . . 11  |-  ( ran  p  =  { 1o }  ->  ran  p  C_  { 1o } )
3331, 32syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  ran  p  C_  { 1o } )
34 df-f 5283 . . . . . . . . . 10  |-  ( p : om --> { 1o } 
<->  ( p  Fn  om  /\ 
ran  p  C_  { 1o } ) )
356, 33, 34sylanbrc 417 . . . . . . . . 9  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  p : om --> { 1o } )
36 1onn 6618 . . . . . . . . . 10  |-  1o  e.  om
37 fconst2g 5811 . . . . . . . . . 10  |-  ( 1o  e.  om  ->  (
p : om --> { 1o } 
<->  p  =  ( om 
X.  { 1o }
) ) )
3836, 37ax-mp 5 . . . . . . . . 9  |-  ( p : om --> { 1o } 
<->  p  =  ( om 
X.  { 1o }
) )
3935, 38sylib 122 . . . . . . . 8  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  p  =  ( om  X.  { 1o } ) )
40 fconstmpt 4729 . . . . . . . 8  |-  ( om 
X.  { 1o }
)  =  ( x  e.  om  |->  1o )
4139, 40eqtrdi 2255 . . . . . . 7  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  p  =  ( x  e.  om  |->  1o ) )
4241fveq2d 5592 . . . . . 6  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  ( Q `  p )  =  ( Q `  ( x  e.  om  |->  1o ) ) )
4342, 13, 103eqtr3d 2247 . . . . 5  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  (/)  =  1o )
4443ex 115 . . . 4  |-  ( (
ph  /\  p  e. )  -> 
( ( Q `  p )  =  (/)  -> 
(/)  =  1o ) )
452, 44mtoi 666 . . 3  |-  ( (
ph  /\  p  e. )  ->  -.  ( Q `  p
)  =  (/) )
46 elmapi 6769 . . . . . . 7  |-  ( Q  e.  ( 2o  ^m )  ->  Q : --> 2o )
477, 46syl 14 . . . . . 6  |-  ( ph  ->  Q : --> 2o )
4847ffvelcdmda 5727 . . . . 5  |-  ( (
ph  /\  p  e. )  -> 
( Q `  p
)  e.  2o )
49 elpri 3660 . . . . . 6  |-  ( ( Q `  p )  e.  { (/) ,  1o }  ->  ( ( Q `
 p )  =  (/)  \/  ( Q `  p )  =  1o ) )
50 df2o3 6528 . . . . . 6  |-  2o  =  { (/) ,  1o }
5149, 50eleq2s 2301 . . . . 5  |-  ( ( Q `  p )  e.  2o  ->  (
( Q `  p
)  =  (/)  \/  ( Q `  p )  =  1o ) )
5248, 51syl 14 . . . 4  |-  ( (
ph  /\  p  e. )  -> 
( ( Q `  p )  =  (/)  \/  ( Q `  p
)  =  1o ) )
5352orcomd 731 . . 3  |-  ( (
ph  /\  p  e. )  -> 
( ( Q `  p )  =  1o  \/  ( Q `  p )  =  (/) ) )
5445, 53ecased 1362 . 2  |-  ( (
ph  /\  p  e. )  -> 
( Q `  p
)  =  1o )
5554ralrimiva 2580 1  |-  ( ph  ->  A. p  e.  ( Q `  p
)  =  1o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373   E.wex 1516    e. wcel 2177   A.wral 2485    C_ wss 3170   (/)c0 3464   ifcif 3575   {csn 3637   {cpr 3638    |-> cmpt 4112   omcom 4645    X. cxp 4680   dom cdm 4682   ran crn 4683    Fn wfn 5274   -->wf 5275   ` cfv 5279  (class class class)co 5956   1oc1o 6507   2oc2o 6508    ^m cmap 6747  ℕxnninf 7235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-iord 4420  df-on 4422  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-fv 5287  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1o 6514  df-2o 6515  df-map 6749  df-nninf 7236
This theorem is referenced by:  nninfsel  16089  nninffeq  16092
  Copyright terms: Public domain W3C validator