Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfall Unicode version

Theorem nninfall 12788
Description: Given a decidable predicate on ℕ, showing it holds for natural numbers and the point at infinity suffices to show it holds everywhere. The sense in which  Q is a decidable predicate is that it assigns a value of either  (/) or  1o (which can be thought of as false and true) to every element of ℕ. Lemma 3.5 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 1-Aug-2022.)
Hypotheses
Ref Expression
nninfall.q  |-  ( ph  ->  Q  e.  ( 2o 
^m ) )
nninfall.inf  |-  ( ph  ->  ( Q `  (
x  e.  om  |->  1o ) )  =  1o )
nninfall.n  |-  ( ph  ->  A. n  e.  om  ( Q `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o )
Assertion
Ref Expression
nninfall  |-  ( ph  ->  A. p  e.  ( Q `  p
)  =  1o )
Distinct variable groups:    Q, n, i   
n, p, i, ph
Allowed substitution hints:    ph( x)    Q( x, p)

Proof of Theorem nninfall
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1n0 6259 . . . . 5  |-  1o  =/=  (/)
21nesymi 2313 . . . 4  |-  -.  (/)  =  1o
3 simplr 500 . . . . . . . . . . 11  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  p  e. )
4 nninff 12782 . . . . . . . . . . . 12  |-  ( p  e.  ->  p : om --> 2o )
54ffnd 5209 . . . . . . . . . . 11  |-  ( p  e.  ->  p  Fn  om )
63, 5syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  p  Fn  om )
7 nninfall.q . . . . . . . . . . . . . . 15  |-  ( ph  ->  Q  e.  ( 2o 
^m ) )
87ad2antrr 475 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  Q  e.  ( 2o  ^m ) )
9 nninfall.inf . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( Q `  (
x  e.  om  |->  1o ) )  =  1o )
109ad2antrr 475 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  ( Q `  ( x  e.  om  |->  1o ) )  =  1o )
11 nninfall.n . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. n  e.  om  ( Q `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o )
1211ad2antrr 475 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  A. n  e.  om  ( Q `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o )
13 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  ( Q `  p )  =  (/) )
148, 10, 12, 3, 13nninfalllem1 12787 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  A. n  e.  om  ( p `  n
)  =  1o )
15 eqeq1 2106 . . . . . . . . . . . . . . 15  |-  ( a  =  ( p `  n )  ->  (
a  =  1o  <->  ( p `  n )  =  1o ) )
1615ralrn 5490 . . . . . . . . . . . . . 14  |-  ( p  Fn  om  ->  ( A. a  e.  ran  p  a  =  1o  <->  A. n  e.  om  (
p `  n )  =  1o ) )
173, 5, 163syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  ( A. a  e.  ran  p  a  =  1o  <->  A. n  e.  om  ( p `  n
)  =  1o ) )
1814, 17mpbird 166 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  A. a  e.  ran  p  a  =  1o )
19 peano1 4446 . . . . . . . . . . . . . . . 16  |-  (/)  e.  om
20 elex2 2657 . . . . . . . . . . . . . . . 16  |-  ( (/)  e.  om  ->  E. b 
b  e.  om )
2119, 20ax-mp 7 . . . . . . . . . . . . . . 15  |-  E. b 
b  e.  om
22 fdm 5214 . . . . . . . . . . . . . . . . 17  |-  ( p : om --> 2o  ->  dom  p  =  om )
2322eleq2d 2169 . . . . . . . . . . . . . . . 16  |-  ( p : om --> 2o  ->  ( b  e.  dom  p  <->  b  e.  om ) )
2423exbidv 1764 . . . . . . . . . . . . . . 15  |-  ( p : om --> 2o  ->  ( E. b  b  e. 
dom  p  <->  E. b 
b  e.  om )
)
2521, 24mpbiri 167 . . . . . . . . . . . . . 14  |-  ( p : om --> 2o  ->  E. b  b  e.  dom  p )
26 dmmrnm 4696 . . . . . . . . . . . . . . 15  |-  ( E. b  b  e.  dom  p 
<->  E. a  a  e. 
ran  p )
27 eqsnm 3629 . . . . . . . . . . . . . . 15  |-  ( E. a  a  e.  ran  p  ->  ( ran  p  =  { 1o }  <->  A. a  e.  ran  p  a  =  1o ) )
2826, 27sylbi 120 . . . . . . . . . . . . . 14  |-  ( E. b  b  e.  dom  p  ->  ( ran  p  =  { 1o }  <->  A. a  e.  ran  p  a  =  1o ) )
2925, 28syl 14 . . . . . . . . . . . . 13  |-  ( p : om --> 2o  ->  ( ran  p  =  { 1o }  <->  A. a  e.  ran  p  a  =  1o ) )
303, 4, 293syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  ( ran  p  =  { 1o }  <->  A. a  e.  ran  p  a  =  1o ) )
3118, 30mpbird 166 . . . . . . . . . . 11  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  ran  p  =  { 1o } )
32 eqimss 3101 . . . . . . . . . . 11  |-  ( ran  p  =  { 1o }  ->  ran  p  C_  { 1o } )
3331, 32syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  ran  p  C_  { 1o } )
34 df-f 5063 . . . . . . . . . 10  |-  ( p : om --> { 1o } 
<->  ( p  Fn  om  /\ 
ran  p  C_  { 1o } ) )
356, 33, 34sylanbrc 411 . . . . . . . . 9  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  p : om --> { 1o } )
36 1onn 6346 . . . . . . . . . 10  |-  1o  e.  om
37 fconst2g 5567 . . . . . . . . . 10  |-  ( 1o  e.  om  ->  (
p : om --> { 1o } 
<->  p  =  ( om 
X.  { 1o }
) ) )
3836, 37ax-mp 7 . . . . . . . . 9  |-  ( p : om --> { 1o } 
<->  p  =  ( om 
X.  { 1o }
) )
3935, 38sylib 121 . . . . . . . 8  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  p  =  ( om  X.  { 1o } ) )
40 fconstmpt 4524 . . . . . . . 8  |-  ( om 
X.  { 1o }
)  =  ( x  e.  om  |->  1o )
4139, 40syl6eq 2148 . . . . . . 7  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  p  =  ( x  e.  om  |->  1o ) )
4241fveq2d 5357 . . . . . 6  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  ( Q `  p )  =  ( Q `  ( x  e.  om  |->  1o ) ) )
4342, 13, 103eqtr3d 2140 . . . . 5  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  (/)  =  1o )
4443ex 114 . . . 4  |-  ( (
ph  /\  p  e. )  -> 
( ( Q `  p )  =  (/)  -> 
(/)  =  1o ) )
452, 44mtoi 631 . . 3  |-  ( (
ph  /\  p  e. )  ->  -.  ( Q `  p
)  =  (/) )
46 elmapi 6494 . . . . . . 7  |-  ( Q  e.  ( 2o  ^m )  ->  Q : --> 2o )
477, 46syl 14 . . . . . 6  |-  ( ph  ->  Q : --> 2o )
4847ffvelrnda 5487 . . . . 5  |-  ( (
ph  /\  p  e. )  -> 
( Q `  p
)  e.  2o )
49 elpri 3497 . . . . . 6  |-  ( ( Q `  p )  e.  { (/) ,  1o }  ->  ( ( Q `
 p )  =  (/)  \/  ( Q `  p )  =  1o ) )
50 df2o3 6257 . . . . . 6  |-  2o  =  { (/) ,  1o }
5149, 50eleq2s 2194 . . . . 5  |-  ( ( Q `  p )  e.  2o  ->  (
( Q `  p
)  =  (/)  \/  ( Q `  p )  =  1o ) )
5248, 51syl 14 . . . 4  |-  ( (
ph  /\  p  e. )  -> 
( ( Q `  p )  =  (/)  \/  ( Q `  p
)  =  1o ) )
5352orcomd 689 . . 3  |-  ( (
ph  /\  p  e. )  -> 
( ( Q `  p )  =  1o  \/  ( Q `  p )  =  (/) ) )
5445, 53ecased 1295 . 2  |-  ( (
ph  /\  p  e. )  -> 
( Q `  p
)  =  1o )
5554ralrimiva 2464 1  |-  ( ph  ->  A. p  e.  ( Q `  p
)  =  1o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 670    = wceq 1299   E.wex 1436    e. wcel 1448   A.wral 2375    C_ wss 3021   (/)c0 3310   ifcif 3421   {csn 3474   {cpr 3475    |-> cmpt 3929   omcom 4442    X. cxp 4475   dom cdm 4477   ran crn 4478    Fn wfn 5054   -->wf 5055   ` cfv 5059  (class class class)co 5706   1oc1o 6236   2oc2o 6237    ^m cmap 6472  ℕxnninf 6917
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-iord 4226  df-on 4228  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1o 6243  df-2o 6244  df-map 6474  df-nninf 6919
This theorem is referenced by:  nninfsel  12797  nninffeq  12800
  Copyright terms: Public domain W3C validator