Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfall Unicode version

Theorem nninfall 14414
Description: Given a decidable predicate on ℕ, showing it holds for natural numbers and the point at infinity suffices to show it holds everywhere. The sense in which  Q is a decidable predicate is that it assigns a value of either  (/) or  1o (which can be thought of as false and true) to every element of ℕ. Lemma 3.5 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 1-Aug-2022.)
Hypotheses
Ref Expression
nninfall.q  |-  ( ph  ->  Q  e.  ( 2o 
^m ) )
nninfall.inf  |-  ( ph  ->  ( Q `  (
x  e.  om  |->  1o ) )  =  1o )
nninfall.n  |-  ( ph  ->  A. n  e.  om  ( Q `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o )
Assertion
Ref Expression
nninfall  |-  ( ph  ->  A. p  e.  ( Q `  p
)  =  1o )
Distinct variable groups:    Q, n, i   
n, p, i, ph
Allowed substitution hints:    ph( x)    Q( x, p)

Proof of Theorem nninfall
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1n0 6427 . . . . 5  |-  1o  =/=  (/)
21nesymi 2393 . . . 4  |-  -.  (/)  =  1o
3 simplr 528 . . . . . . . . . . 11  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  p  e. )
4 nninff 7115 . . . . . . . . . . . 12  |-  ( p  e.  ->  p : om --> 2o )
54ffnd 5362 . . . . . . . . . . 11  |-  ( p  e.  ->  p  Fn  om )
63, 5syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  p  Fn  om )
7 nninfall.q . . . . . . . . . . . . . . 15  |-  ( ph  ->  Q  e.  ( 2o 
^m ) )
87ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  Q  e.  ( 2o  ^m ) )
9 nninfall.inf . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( Q `  (
x  e.  om  |->  1o ) )  =  1o )
109ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  ( Q `  ( x  e.  om  |->  1o ) )  =  1o )
11 nninfall.n . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. n  e.  om  ( Q `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o )
1211ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  A. n  e.  om  ( Q `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o )
13 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  ( Q `  p )  =  (/) )
148, 10, 12, 3, 13nninfalllem1 14413 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  A. n  e.  om  ( p `  n
)  =  1o )
15 eqeq1 2184 . . . . . . . . . . . . . . 15  |-  ( a  =  ( p `  n )  ->  (
a  =  1o  <->  ( p `  n )  =  1o ) )
1615ralrn 5650 . . . . . . . . . . . . . 14  |-  ( p  Fn  om  ->  ( A. a  e.  ran  p  a  =  1o  <->  A. n  e.  om  (
p `  n )  =  1o ) )
173, 5, 163syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  ( A. a  e.  ran  p  a  =  1o  <->  A. n  e.  om  ( p `  n
)  =  1o ) )
1814, 17mpbird 167 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  A. a  e.  ran  p  a  =  1o )
19 peano1 4590 . . . . . . . . . . . . . . . 16  |-  (/)  e.  om
20 elex2 2753 . . . . . . . . . . . . . . . 16  |-  ( (/)  e.  om  ->  E. b 
b  e.  om )
2119, 20ax-mp 5 . . . . . . . . . . . . . . 15  |-  E. b 
b  e.  om
22 fdm 5367 . . . . . . . . . . . . . . . . 17  |-  ( p : om --> 2o  ->  dom  p  =  om )
2322eleq2d 2247 . . . . . . . . . . . . . . . 16  |-  ( p : om --> 2o  ->  ( b  e.  dom  p  <->  b  e.  om ) )
2423exbidv 1825 . . . . . . . . . . . . . . 15  |-  ( p : om --> 2o  ->  ( E. b  b  e. 
dom  p  <->  E. b 
b  e.  om )
)
2521, 24mpbiri 168 . . . . . . . . . . . . . 14  |-  ( p : om --> 2o  ->  E. b  b  e.  dom  p )
26 dmmrnm 4842 . . . . . . . . . . . . . . 15  |-  ( E. b  b  e.  dom  p 
<->  E. a  a  e. 
ran  p )
27 eqsnm 3753 . . . . . . . . . . . . . . 15  |-  ( E. a  a  e.  ran  p  ->  ( ran  p  =  { 1o }  <->  A. a  e.  ran  p  a  =  1o ) )
2826, 27sylbi 121 . . . . . . . . . . . . . 14  |-  ( E. b  b  e.  dom  p  ->  ( ran  p  =  { 1o }  <->  A. a  e.  ran  p  a  =  1o ) )
2925, 28syl 14 . . . . . . . . . . . . 13  |-  ( p : om --> 2o  ->  ( ran  p  =  { 1o }  <->  A. a  e.  ran  p  a  =  1o ) )
303, 4, 293syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  ( ran  p  =  { 1o }  <->  A. a  e.  ran  p  a  =  1o ) )
3118, 30mpbird 167 . . . . . . . . . . 11  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  ran  p  =  { 1o } )
32 eqimss 3209 . . . . . . . . . . 11  |-  ( ran  p  =  { 1o }  ->  ran  p  C_  { 1o } )
3331, 32syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  ran  p  C_  { 1o } )
34 df-f 5216 . . . . . . . . . 10  |-  ( p : om --> { 1o } 
<->  ( p  Fn  om  /\ 
ran  p  C_  { 1o } ) )
356, 33, 34sylanbrc 417 . . . . . . . . 9  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  p : om --> { 1o } )
36 1onn 6515 . . . . . . . . . 10  |-  1o  e.  om
37 fconst2g 5727 . . . . . . . . . 10  |-  ( 1o  e.  om  ->  (
p : om --> { 1o } 
<->  p  =  ( om 
X.  { 1o }
) ) )
3836, 37ax-mp 5 . . . . . . . . 9  |-  ( p : om --> { 1o } 
<->  p  =  ( om 
X.  { 1o }
) )
3935, 38sylib 122 . . . . . . . 8  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  p  =  ( om  X.  { 1o } ) )
40 fconstmpt 4670 . . . . . . . 8  |-  ( om 
X.  { 1o }
)  =  ( x  e.  om  |->  1o )
4139, 40eqtrdi 2226 . . . . . . 7  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  p  =  ( x  e.  om  |->  1o ) )
4241fveq2d 5515 . . . . . 6  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  ( Q `  p )  =  ( Q `  ( x  e.  om  |->  1o ) ) )
4342, 13, 103eqtr3d 2218 . . . . 5  |-  ( ( ( ph  /\  p  e. )  /\  ( Q `  p )  =  (/) )  ->  (/)  =  1o )
4443ex 115 . . . 4  |-  ( (
ph  /\  p  e. )  -> 
( ( Q `  p )  =  (/)  -> 
(/)  =  1o ) )
452, 44mtoi 664 . . 3  |-  ( (
ph  /\  p  e. )  ->  -.  ( Q `  p
)  =  (/) )
46 elmapi 6664 . . . . . . 7  |-  ( Q  e.  ( 2o  ^m )  ->  Q : --> 2o )
477, 46syl 14 . . . . . 6  |-  ( ph  ->  Q : --> 2o )
4847ffvelcdmda 5647 . . . . 5  |-  ( (
ph  /\  p  e. )  -> 
( Q `  p
)  e.  2o )
49 elpri 3614 . . . . . 6  |-  ( ( Q `  p )  e.  { (/) ,  1o }  ->  ( ( Q `
 p )  =  (/)  \/  ( Q `  p )  =  1o ) )
50 df2o3 6425 . . . . . 6  |-  2o  =  { (/) ,  1o }
5149, 50eleq2s 2272 . . . . 5  |-  ( ( Q `  p )  e.  2o  ->  (
( Q `  p
)  =  (/)  \/  ( Q `  p )  =  1o ) )
5248, 51syl 14 . . . 4  |-  ( (
ph  /\  p  e. )  -> 
( ( Q `  p )  =  (/)  \/  ( Q `  p
)  =  1o ) )
5352orcomd 729 . . 3  |-  ( (
ph  /\  p  e. )  -> 
( ( Q `  p )  =  1o  \/  ( Q `  p )  =  (/) ) )
5445, 53ecased 1349 . 2  |-  ( (
ph  /\  p  e. )  -> 
( Q `  p
)  =  1o )
5554ralrimiva 2550 1  |-  ( ph  ->  A. p  e.  ( Q `  p
)  =  1o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    = wceq 1353   E.wex 1492    e. wcel 2148   A.wral 2455    C_ wss 3129   (/)c0 3422   ifcif 3534   {csn 3591   {cpr 3592    |-> cmpt 4061   omcom 4586    X. cxp 4621   dom cdm 4623   ran crn 4624    Fn wfn 5207   -->wf 5208   ` cfv 5212  (class class class)co 5869   1oc1o 6404   2oc2o 6405    ^m cmap 6642  ℕxnninf 7112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1o 6411  df-2o 6412  df-map 6644  df-nninf 7113
This theorem is referenced by:  nninfsel  14422  nninffeq  14425
  Copyright terms: Public domain W3C validator