ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsnm GIF version

Theorem eqsnm 3795
Description: Two ways to express that an inhabited set equals a singleton. (Contributed by Jim Kingdon, 11-Aug-2018.)
Assertion
Ref Expression
eqsnm (∃𝑥 𝑥𝐴 → (𝐴 = {𝐵} ↔ ∀𝑥𝐴 𝑥 = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem eqsnm
StepHypRef Expression
1 sssnm 3794 . 2 (∃𝑥 𝑥𝐴 → (𝐴 ⊆ {𝐵} ↔ 𝐴 = {𝐵}))
2 dfss3 3181 . . 3 (𝐴 ⊆ {𝐵} ↔ ∀𝑥𝐴 𝑥 ∈ {𝐵})
3 velsn 3649 . . . 4 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
43ralbii 2511 . . 3 (∀𝑥𝐴 𝑥 ∈ {𝐵} ↔ ∀𝑥𝐴 𝑥 = 𝐵)
52, 4bitri 184 . 2 (𝐴 ⊆ {𝐵} ↔ ∀𝑥𝐴 𝑥 = 𝐵)
61, 5bitr3di 195 1 (∃𝑥 𝑥𝐴 → (𝐴 = {𝐵} ↔ ∀𝑥𝐴 𝑥 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1372  wex 1514  wcel 2175  wral 2483  wss 3165  {csn 3632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-v 2773  df-in 3171  df-ss 3178  df-sn 3638
This theorem is referenced by:  01eq0ring  13922  nninfall  15908
  Copyright terms: Public domain W3C validator