ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsnm GIF version

Theorem eqsnm 3757
Description: Two ways to express that an inhabited set equals a singleton. (Contributed by Jim Kingdon, 11-Aug-2018.)
Assertion
Ref Expression
eqsnm (∃𝑥 𝑥𝐴 → (𝐴 = {𝐵} ↔ ∀𝑥𝐴 𝑥 = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem eqsnm
StepHypRef Expression
1 sssnm 3756 . 2 (∃𝑥 𝑥𝐴 → (𝐴 ⊆ {𝐵} ↔ 𝐴 = {𝐵}))
2 dfss3 3147 . . 3 (𝐴 ⊆ {𝐵} ↔ ∀𝑥𝐴 𝑥 ∈ {𝐵})
3 velsn 3611 . . . 4 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
43ralbii 2483 . . 3 (∀𝑥𝐴 𝑥 ∈ {𝐵} ↔ ∀𝑥𝐴 𝑥 = 𝐵)
52, 4bitri 184 . 2 (𝐴 ⊆ {𝐵} ↔ ∀𝑥𝐴 𝑥 = 𝐵)
61, 5bitr3di 195 1 (∃𝑥 𝑥𝐴 → (𝐴 = {𝐵} ↔ ∀𝑥𝐴 𝑥 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1353  wex 1492  wcel 2148  wral 2455  wss 3131  {csn 3594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-in 3137  df-ss 3144  df-sn 3600
This theorem is referenced by:  01eq0ring  13335  nninfall  14843
  Copyright terms: Public domain W3C validator