ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsnm GIF version

Theorem eqsnm 3742
Description: Two ways to express that an inhabited set equals a singleton. (Contributed by Jim Kingdon, 11-Aug-2018.)
Assertion
Ref Expression
eqsnm (∃𝑥 𝑥𝐴 → (𝐴 = {𝐵} ↔ ∀𝑥𝐴 𝑥 = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem eqsnm
StepHypRef Expression
1 sssnm 3741 . 2 (∃𝑥 𝑥𝐴 → (𝐴 ⊆ {𝐵} ↔ 𝐴 = {𝐵}))
2 dfss3 3137 . . 3 (𝐴 ⊆ {𝐵} ↔ ∀𝑥𝐴 𝑥 ∈ {𝐵})
3 velsn 3600 . . . 4 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
43ralbii 2476 . . 3 (∀𝑥𝐴 𝑥 ∈ {𝐵} ↔ ∀𝑥𝐴 𝑥 = 𝐵)
52, 4bitri 183 . 2 (𝐴 ⊆ {𝐵} ↔ ∀𝑥𝐴 𝑥 = 𝐵)
61, 5bitr3di 194 1 (∃𝑥 𝑥𝐴 → (𝐴 = {𝐵} ↔ ∀𝑥𝐴 𝑥 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1348  wex 1485  wcel 2141  wral 2448  wss 3121  {csn 3583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-in 3127  df-ss 3134  df-sn 3589
This theorem is referenced by:  nninfall  14042
  Copyright terms: Public domain W3C validator