ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsnm GIF version

Theorem eqsnm 3781
Description: Two ways to express that an inhabited set equals a singleton. (Contributed by Jim Kingdon, 11-Aug-2018.)
Assertion
Ref Expression
eqsnm (∃𝑥 𝑥𝐴 → (𝐴 = {𝐵} ↔ ∀𝑥𝐴 𝑥 = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem eqsnm
StepHypRef Expression
1 sssnm 3780 . 2 (∃𝑥 𝑥𝐴 → (𝐴 ⊆ {𝐵} ↔ 𝐴 = {𝐵}))
2 dfss3 3169 . . 3 (𝐴 ⊆ {𝐵} ↔ ∀𝑥𝐴 𝑥 ∈ {𝐵})
3 velsn 3635 . . . 4 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
43ralbii 2500 . . 3 (∀𝑥𝐴 𝑥 ∈ {𝐵} ↔ ∀𝑥𝐴 𝑥 = 𝐵)
52, 4bitri 184 . 2 (𝐴 ⊆ {𝐵} ↔ ∀𝑥𝐴 𝑥 = 𝐵)
61, 5bitr3di 195 1 (∃𝑥 𝑥𝐴 → (𝐴 = {𝐵} ↔ ∀𝑥𝐴 𝑥 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wex 1503  wcel 2164  wral 2472  wss 3153  {csn 3618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-in 3159  df-ss 3166  df-sn 3624
This theorem is referenced by:  01eq0ring  13685  nninfall  15499
  Copyright terms: Public domain W3C validator