ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssprr Unicode version

Theorem ssprr 3757
Description: The subsets of a pair. (Contributed by Jim Kingdon, 11-Aug-2018.)
Assertion
Ref Expression
ssprr  |-  ( ( ( A  =  (/)  \/  A  =  { B } )  \/  ( A  =  { C }  \/  A  =  { B ,  C }
) )  ->  A  C_ 
{ B ,  C } )

Proof of Theorem ssprr
StepHypRef Expression
1 0ss 3462 . . . 4  |-  (/)  C_  { B ,  C }
2 sseq1 3179 . . . 4  |-  ( A  =  (/)  ->  ( A 
C_  { B ,  C }  <->  (/)  C_  { B ,  C } ) )
31, 2mpbiri 168 . . 3  |-  ( A  =  (/)  ->  A  C_  { B ,  C }
)
4 snsspr1 3741 . . . 4  |-  { B }  C_  { B ,  C }
5 sseq1 3179 . . . 4  |-  ( A  =  { B }  ->  ( A  C_  { B ,  C }  <->  { B }  C_  { B ,  C } ) )
64, 5mpbiri 168 . . 3  |-  ( A  =  { B }  ->  A  C_  { B ,  C } )
73, 6jaoi 716 . 2  |-  ( ( A  =  (/)  \/  A  =  { B } )  ->  A  C_  { B ,  C } )
8 snsspr2 3742 . . . 4  |-  { C }  C_  { B ,  C }
9 sseq1 3179 . . . 4  |-  ( A  =  { C }  ->  ( A  C_  { B ,  C }  <->  { C }  C_  { B ,  C } ) )
108, 9mpbiri 168 . . 3  |-  ( A  =  { C }  ->  A  C_  { B ,  C } )
11 eqimss 3210 . . 3  |-  ( A  =  { B ,  C }  ->  A  C_  { B ,  C }
)
1210, 11jaoi 716 . 2  |-  ( ( A  =  { C }  \/  A  =  { B ,  C }
)  ->  A  C_  { B ,  C } )
137, 12jaoi 716 1  |-  ( ( ( A  =  (/)  \/  A  =  { B } )  \/  ( A  =  { C }  \/  A  =  { B ,  C }
) )  ->  A  C_ 
{ B ,  C } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 708    = wceq 1353    C_ wss 3130   (/)c0 3423   {csn 3593   {cpr 3594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pr 3600
This theorem is referenced by:  sstpr  3758  pwprss  3806
  Copyright terms: Public domain W3C validator