ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssprr Unicode version

Theorem ssprr 3796
Description: The subsets of a pair. (Contributed by Jim Kingdon, 11-Aug-2018.)
Assertion
Ref Expression
ssprr  |-  ( ( ( A  =  (/)  \/  A  =  { B } )  \/  ( A  =  { C }  \/  A  =  { B ,  C }
) )  ->  A  C_ 
{ B ,  C } )

Proof of Theorem ssprr
StepHypRef Expression
1 0ss 3498 . . . 4  |-  (/)  C_  { B ,  C }
2 sseq1 3215 . . . 4  |-  ( A  =  (/)  ->  ( A 
C_  { B ,  C }  <->  (/)  C_  { B ,  C } ) )
31, 2mpbiri 168 . . 3  |-  ( A  =  (/)  ->  A  C_  { B ,  C }
)
4 snsspr1 3780 . . . 4  |-  { B }  C_  { B ,  C }
5 sseq1 3215 . . . 4  |-  ( A  =  { B }  ->  ( A  C_  { B ,  C }  <->  { B }  C_  { B ,  C } ) )
64, 5mpbiri 168 . . 3  |-  ( A  =  { B }  ->  A  C_  { B ,  C } )
73, 6jaoi 717 . 2  |-  ( ( A  =  (/)  \/  A  =  { B } )  ->  A  C_  { B ,  C } )
8 snsspr2 3781 . . . 4  |-  { C }  C_  { B ,  C }
9 sseq1 3215 . . . 4  |-  ( A  =  { C }  ->  ( A  C_  { B ,  C }  <->  { C }  C_  { B ,  C } ) )
108, 9mpbiri 168 . . 3  |-  ( A  =  { C }  ->  A  C_  { B ,  C } )
11 eqimss 3246 . . 3  |-  ( A  =  { B ,  C }  ->  A  C_  { B ,  C }
)
1210, 11jaoi 717 . 2  |-  ( ( A  =  { C }  \/  A  =  { B ,  C }
)  ->  A  C_  { B ,  C } )
137, 12jaoi 717 1  |-  ( ( ( A  =  (/)  \/  A  =  { B } )  \/  ( A  =  { C }  \/  A  =  { B ,  C }
) )  ->  A  C_ 
{ B ,  C } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 709    = wceq 1372    C_ wss 3165   (/)c0 3459   {csn 3632   {cpr 3633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pr 3639
This theorem is referenced by:  sstpr  3797  pwprss  3845
  Copyright terms: Public domain W3C validator