Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfeq1 | Unicode version |
Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
nfeq1.1 |
Ref | Expression |
---|---|
nfeq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeq1.1 | . 2 | |
2 | nfcv 2317 | . 2 | |
3 | 1, 2 | nfeq 2325 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1353 wnf 1458 wnfc 2304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-cleq 2168 df-clel 2171 df-nfc 2306 |
This theorem is referenced by: euabsn 3659 fvmptt 5599 eusvobj2 5851 ovmpodv2 5998 ovi3 6001 dom2lem 6762 seq3f1olemstep 10469 seq3f1olemp 10470 fsumf1o 11364 isumss 11365 isummulc2 11400 fsum00 11436 isumshft 11464 fprodf1o 11562 prodssdc 11563 |
Copyright terms: Public domain | W3C validator |