| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfeq1 | Unicode version | ||
| Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeq1.1 |
|
| Ref | Expression |
|---|---|
| nfeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeq1.1 |
. 2
| |
| 2 | nfcv 2372 |
. 2
| |
| 3 | 1, 2 | nfeq 2380 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-cleq 2222 df-clel 2225 df-nfc 2361 |
| This theorem is referenced by: euabsn 3736 invdisjrab 4077 fvmptt 5726 eusvobj2 5987 ovmpodv2 6138 ovi3 6142 dom2lem 6923 seq3f1olemstep 10736 seq3f1olemp 10737 fsumf1o 11901 isumss 11902 isummulc2 11937 fsum00 11973 isumshft 12001 fprodf1o 12099 prodssdc 12100 |
| Copyright terms: Public domain | W3C validator |