| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfeq1 | Unicode version | ||
| Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeq1.1 |
|
| Ref | Expression |
|---|---|
| nfeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeq1.1 |
. 2
| |
| 2 | nfcv 2348 |
. 2
| |
| 3 | 1, 2 | nfeq 2356 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-cleq 2198 df-clel 2201 df-nfc 2337 |
| This theorem is referenced by: euabsn 3703 invdisjrab 4039 fvmptt 5673 eusvobj2 5932 ovmpodv2 6081 ovi3 6085 dom2lem 6865 seq3f1olemstep 10661 seq3f1olemp 10662 fsumf1o 11734 isumss 11735 isummulc2 11770 fsum00 11806 isumshft 11834 fprodf1o 11932 prodssdc 11933 |
| Copyright terms: Public domain | W3C validator |