![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > euabsn | GIF version |
Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by NM, 22-Feb-2004.) |
Ref | Expression |
---|---|
euabsn | ⊢ (∃!𝑥𝜑 ↔ ∃𝑥{𝑥 ∣ 𝜑} = {𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euabsn2 3687 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) | |
2 | nfv 1539 | . . 3 ⊢ Ⅎ𝑦{𝑥 ∣ 𝜑} = {𝑥} | |
3 | nfab1 2338 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
4 | 3 | nfeq1 2346 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} = {𝑦} |
5 | sneq 3629 | . . . 4 ⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) | |
6 | 5 | eqeq2d 2205 | . . 3 ⊢ (𝑥 = 𝑦 → ({𝑥 ∣ 𝜑} = {𝑥} ↔ {𝑥 ∣ 𝜑} = {𝑦})) |
7 | 2, 4, 6 | cbvex 1767 | . 2 ⊢ (∃𝑥{𝑥 ∣ 𝜑} = {𝑥} ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
8 | 1, 7 | bitr4i 187 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃𝑥{𝑥 ∣ 𝜑} = {𝑥}) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 ∃wex 1503 ∃!weu 2042 {cab 2179 {csn 3618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-sn 3624 |
This theorem is referenced by: eusn 3692 args 5034 mapsn 6744 |
Copyright terms: Public domain | W3C validator |