| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > euabsn | GIF version | ||
| Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by NM, 22-Feb-2004.) |
| Ref | Expression |
|---|---|
| euabsn | ⊢ (∃!𝑥𝜑 ↔ ∃𝑥{𝑥 ∣ 𝜑} = {𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euabsn2 3701 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) | |
| 2 | nfv 1550 | . . 3 ⊢ Ⅎ𝑦{𝑥 ∣ 𝜑} = {𝑥} | |
| 3 | nfab1 2349 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
| 4 | 3 | nfeq1 2357 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} = {𝑦} |
| 5 | sneq 3643 | . . . 4 ⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) | |
| 6 | 5 | eqeq2d 2216 | . . 3 ⊢ (𝑥 = 𝑦 → ({𝑥 ∣ 𝜑} = {𝑥} ↔ {𝑥 ∣ 𝜑} = {𝑦})) |
| 7 | 2, 4, 6 | cbvex 1778 | . 2 ⊢ (∃𝑥{𝑥 ∣ 𝜑} = {𝑥} ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
| 8 | 1, 7 | bitr4i 187 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃𝑥{𝑥 ∣ 𝜑} = {𝑥}) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1372 ∃wex 1514 ∃!weu 2053 {cab 2190 {csn 3632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-sn 3638 |
| This theorem is referenced by: eusn 3706 args 5048 mapsn 6767 |
| Copyright terms: Public domain | W3C validator |