ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euabsn GIF version

Theorem euabsn 3653
Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by NM, 22-Feb-2004.)
Assertion
Ref Expression
euabsn (∃!𝑥𝜑 ↔ ∃𝑥{𝑥𝜑} = {𝑥})

Proof of Theorem euabsn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 euabsn2 3652 . 2 (∃!𝑥𝜑 ↔ ∃𝑦{𝑥𝜑} = {𝑦})
2 nfv 1521 . . 3 𝑦{𝑥𝜑} = {𝑥}
3 nfab1 2314 . . . 4 𝑥{𝑥𝜑}
43nfeq1 2322 . . 3 𝑥{𝑥𝜑} = {𝑦}
5 sneq 3594 . . . 4 (𝑥 = 𝑦 → {𝑥} = {𝑦})
65eqeq2d 2182 . . 3 (𝑥 = 𝑦 → ({𝑥𝜑} = {𝑥} ↔ {𝑥𝜑} = {𝑦}))
72, 4, 6cbvex 1749 . 2 (∃𝑥{𝑥𝜑} = {𝑥} ↔ ∃𝑦{𝑥𝜑} = {𝑦})
81, 7bitr4i 186 1 (∃!𝑥𝜑 ↔ ∃𝑥{𝑥𝜑} = {𝑥})
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1348  wex 1485  ∃!weu 2019  {cab 2156  {csn 3583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-sn 3589
This theorem is referenced by:  eusn  3657  args  4980  mapsn  6668
  Copyright terms: Public domain W3C validator