| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > euabsn | GIF version | ||
| Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by NM, 22-Feb-2004.) |
| Ref | Expression |
|---|---|
| euabsn | ⊢ (∃!𝑥𝜑 ↔ ∃𝑥{𝑥 ∣ 𝜑} = {𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euabsn2 3707 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) | |
| 2 | nfv 1552 | . . 3 ⊢ Ⅎ𝑦{𝑥 ∣ 𝜑} = {𝑥} | |
| 3 | nfab1 2351 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
| 4 | 3 | nfeq1 2359 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} = {𝑦} |
| 5 | sneq 3649 | . . . 4 ⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) | |
| 6 | 5 | eqeq2d 2218 | . . 3 ⊢ (𝑥 = 𝑦 → ({𝑥 ∣ 𝜑} = {𝑥} ↔ {𝑥 ∣ 𝜑} = {𝑦})) |
| 7 | 2, 4, 6 | cbvex 1780 | . 2 ⊢ (∃𝑥{𝑥 ∣ 𝜑} = {𝑥} ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
| 8 | 1, 7 | bitr4i 187 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃𝑥{𝑥 ∣ 𝜑} = {𝑥}) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ∃wex 1516 ∃!weu 2055 {cab 2192 {csn 3638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-sn 3644 |
| This theorem is referenced by: eusn 3712 args 5060 mapsn 6790 |
| Copyright terms: Public domain | W3C validator |