ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euabsn GIF version

Theorem euabsn 3688
Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by NM, 22-Feb-2004.)
Assertion
Ref Expression
euabsn (∃!𝑥𝜑 ↔ ∃𝑥{𝑥𝜑} = {𝑥})

Proof of Theorem euabsn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 euabsn2 3687 . 2 (∃!𝑥𝜑 ↔ ∃𝑦{𝑥𝜑} = {𝑦})
2 nfv 1539 . . 3 𝑦{𝑥𝜑} = {𝑥}
3 nfab1 2338 . . . 4 𝑥{𝑥𝜑}
43nfeq1 2346 . . 3 𝑥{𝑥𝜑} = {𝑦}
5 sneq 3629 . . . 4 (𝑥 = 𝑦 → {𝑥} = {𝑦})
65eqeq2d 2205 . . 3 (𝑥 = 𝑦 → ({𝑥𝜑} = {𝑥} ↔ {𝑥𝜑} = {𝑦}))
72, 4, 6cbvex 1767 . 2 (∃𝑥{𝑥𝜑} = {𝑥} ↔ ∃𝑦{𝑥𝜑} = {𝑦})
81, 7bitr4i 187 1 (∃!𝑥𝜑 ↔ ∃𝑥{𝑥𝜑} = {𝑥})
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  wex 1503  ∃!weu 2042  {cab 2179  {csn 3618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-sn 3624
This theorem is referenced by:  eusn  3692  args  5034  mapsn  6744
  Copyright terms: Public domain W3C validator