ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  args Unicode version

Theorem args 5034
Description: Two ways to express the class of unique-valued arguments of 
F, which is the same as the domain of  F whenever  F is a function. The left-hand side of the equality is from Definition 10.2 of [Quine] p. 65. Quine uses the notation "arg  F " for this class (for which we have no separate notation). (Contributed by NM, 8-May-2005.)
Assertion
Ref Expression
args  |-  { x  |  E. y ( F
" { x }
)  =  { y } }  =  {
x  |  E! y  x F y }
Distinct variable groups:    y, F    x, y
Allowed substitution hint:    F( x)

Proof of Theorem args
StepHypRef Expression
1 vex 2763 . . . . . 6  |-  x  e. 
_V
2 imasng 5030 . . . . . 6  |-  ( x  e.  _V  ->  ( F " { x }
)  =  { y  |  x F y } )
31, 2ax-mp 5 . . . . 5  |-  ( F
" { x }
)  =  { y  |  x F y }
43eqeq1i 2201 . . . 4  |-  ( ( F " { x } )  =  {
y }  <->  { y  |  x F y }  =  { y } )
54exbii 1616 . . 3  |-  ( E. y ( F " { x } )  =  { y }  <->  E. y { y  |  x F y }  =  { y } )
6 euabsn 3688 . . 3  |-  ( E! y  x F y  <->  E. y { y  |  x F y }  =  { y } )
75, 6bitr4i 187 . 2  |-  ( E. y ( F " { x } )  =  { y }  <-> 
E! y  x F y )
87abbii 2309 1  |-  { x  |  E. y ( F
" { x }
)  =  { y } }  =  {
x  |  E! y  x F y }
Colors of variables: wff set class
Syntax hints:    = wceq 1364   E.wex 1503   E!weu 2042    e. wcel 2164   {cab 2179   _Vcvv 2760   {csn 3618   class class class wbr 4029   "cima 4662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-cnv 4667  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator