Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > args | Unicode version |
Description: Two ways to express the class of unique-valued arguments of , which is the same as the domain of whenever is a function. The left-hand side of the equality is from Definition 10.2 of [Quine] p. 65. Quine uses the notation "arg " for this class (for which we have no separate notation). (Contributed by NM, 8-May-2005.) |
Ref | Expression |
---|---|
args |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2729 | . . . . . 6 | |
2 | imasng 4969 | . . . . . 6 | |
3 | 1, 2 | ax-mp 5 | . . . . 5 |
4 | 3 | eqeq1i 2173 | . . . 4 |
5 | 4 | exbii 1593 | . . 3 |
6 | euabsn 3646 | . . 3 | |
7 | 5, 6 | bitr4i 186 | . 2 |
8 | 7 | abbii 2282 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 wex 1480 weu 2014 wcel 2136 cab 2151 cvv 2726 csn 3576 class class class wbr 3982 cima 4607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |