ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  args Unicode version

Theorem args 5096
Description: Two ways to express the class of unique-valued arguments of 
F, which is the same as the domain of  F whenever  F is a function. The left-hand side of the equality is from Definition 10.2 of [Quine] p. 65. Quine uses the notation "arg  F " for this class (for which we have no separate notation). (Contributed by NM, 8-May-2005.)
Assertion
Ref Expression
args  |-  { x  |  E. y ( F
" { x }
)  =  { y } }  =  {
x  |  E! y  x F y }
Distinct variable groups:    y, F    x, y
Allowed substitution hint:    F( x)

Proof of Theorem args
StepHypRef Expression
1 vex 2802 . . . . . 6  |-  x  e. 
_V
2 imasng 5092 . . . . . 6  |-  ( x  e.  _V  ->  ( F " { x }
)  =  { y  |  x F y } )
31, 2ax-mp 5 . . . . 5  |-  ( F
" { x }
)  =  { y  |  x F y }
43eqeq1i 2237 . . . 4  |-  ( ( F " { x } )  =  {
y }  <->  { y  |  x F y }  =  { y } )
54exbii 1651 . . 3  |-  ( E. y ( F " { x } )  =  { y }  <->  E. y { y  |  x F y }  =  { y } )
6 euabsn 3736 . . 3  |-  ( E! y  x F y  <->  E. y { y  |  x F y }  =  { y } )
75, 6bitr4i 187 . 2  |-  ( E. y ( F " { x } )  =  { y }  <-> 
E! y  x F y )
87abbii 2345 1  |-  { x  |  E. y ( F
" { x }
)  =  { y } }  =  {
x  |  E! y  x F y }
Colors of variables: wff set class
Syntax hints:    = wceq 1395   E.wex 1538   E!weu 2077    e. wcel 2200   {cab 2215   _Vcvv 2799   {csn 3666   class class class wbr 4082   "cima 4721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-cnv 4726  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator