ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reupick3 Unicode version

Theorem reupick3 3489
Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 19-Nov-2016.)
Assertion
Ref Expression
reupick3  |-  ( ( E! x  e.  A  ph 
/\  E. x  e.  A  ( ph  /\  ps )  /\  x  e.  A
)  ->  ( ph  ->  ps ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem reupick3
StepHypRef Expression
1 df-reu 2515 . . . 4  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
2 df-rex 2514 . . . . 5  |-  ( E. x  e.  A  (
ph  /\  ps )  <->  E. x ( x  e.  A  /\  ( ph  /\ 
ps ) ) )
3 anass 401 . . . . . 6  |-  ( ( ( x  e.  A  /\  ph )  /\  ps ) 
<->  ( x  e.  A  /\  ( ph  /\  ps ) ) )
43exbii 1651 . . . . 5  |-  ( E. x ( ( x  e.  A  /\  ph )  /\  ps )  <->  E. x
( x  e.  A  /\  ( ph  /\  ps ) ) )
52, 4bitr4i 187 . . . 4  |-  ( E. x  e.  A  (
ph  /\  ps )  <->  E. x ( ( x  e.  A  /\  ph )  /\  ps ) )
6 eupick 2157 . . . 4  |-  ( ( E! x ( x  e.  A  /\  ph )  /\  E. x ( ( x  e.  A  /\  ph )  /\  ps ) )  ->  (
( x  e.  A  /\  ph )  ->  ps ) )
71, 5, 6syl2anb 291 . . 3  |-  ( ( E! x  e.  A  ph 
/\  E. x  e.  A  ( ph  /\  ps )
)  ->  ( (
x  e.  A  /\  ph )  ->  ps )
)
87expd 258 . 2  |-  ( ( E! x  e.  A  ph 
/\  E. x  e.  A  ( ph  /\  ps )
)  ->  ( x  e.  A  ->  ( ph  ->  ps ) ) )
983impia 1224 1  |-  ( ( E! x  e.  A  ph 
/\  E. x  e.  A  ( ph  /\  ps )  /\  x  e.  A
)  ->  ( ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002   E.wex 1538   E!weu 2077    e. wcel 2200   E.wrex 2509   E!wreu 2510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-rex 2514  df-reu 2515
This theorem is referenced by:  reupick2  3490
  Copyright terms: Public domain W3C validator