Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  reupick3 Unicode version

Theorem reupick3 3365
 Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 19-Nov-2016.)
Assertion
Ref Expression
reupick3
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem reupick3
StepHypRef Expression
1 df-reu 2424 . . . 4
2 df-rex 2423 . . . . 5
3 anass 399 . . . . . 6
43exbii 1585 . . . . 5
52, 4bitr4i 186 . . . 4
6 eupick 2079 . . . 4
71, 5, 6syl2anb 289 . . 3
87expd 256 . 2
983impia 1179 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103   w3a 963  wex 1469   wcel 1481  weu 2000  wrex 2418  wreu 2419 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516 This theorem depends on definitions:  df-bi 116  df-3an 965  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-rex 2423  df-reu 2424 This theorem is referenced by:  reupick2  3366
 Copyright terms: Public domain W3C validator