ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eusv2 Unicode version

Theorem eusv2 4434
Description: Two ways to express single-valuedness of a class expression  A ( x ). (Contributed by NM, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Hypothesis
Ref Expression
eusv2.1  |-  A  e. 
_V
Assertion
Ref Expression
eusv2  |-  ( E! y E. x  y  =  A  <->  E! y A. x  y  =  A )
Distinct variable groups:    x, y    y, A
Allowed substitution hint:    A( x)

Proof of Theorem eusv2
StepHypRef Expression
1 eusv2.1 . . 3  |-  A  e. 
_V
21eusv2nf 4433 . 2  |-  ( E! y E. x  y  =  A  <->  F/_ x A )
3 eusvnfb 4431 . . 3  |-  ( E! y A. x  y  =  A  <->  ( F/_ x A  /\  A  e. 
_V ) )
41, 3mpbiran2 931 . 2  |-  ( E! y A. x  y  =  A  <->  F/_ x A )
52, 4bitr4i 186 1  |-  ( E! y E. x  y  =  A  <->  E! y A. x  y  =  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   A.wal 1341    = wceq 1343   E.wex 1480   E!weu 2014    e. wcel 2136   F/_wnfc 2294   _Vcvv 2725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-rex 2449  df-v 2727  df-sbc 2951  df-csb 3045  df-un 3119  df-sn 3581  df-pr 3582  df-uni 3789
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator