ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eusv2 Unicode version

Theorem eusv2 4503
Description: Two ways to express single-valuedness of a class expression  A ( x ). (Contributed by NM, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Hypothesis
Ref Expression
eusv2.1  |-  A  e. 
_V
Assertion
Ref Expression
eusv2  |-  ( E! y E. x  y  =  A  <->  E! y A. x  y  =  A )
Distinct variable groups:    x, y    y, A
Allowed substitution hint:    A( x)

Proof of Theorem eusv2
StepHypRef Expression
1 eusv2.1 . . 3  |-  A  e. 
_V
21eusv2nf 4502 . 2  |-  ( E! y E. x  y  =  A  <->  F/_ x A )
3 eusvnfb 4500 . . 3  |-  ( E! y A. x  y  =  A  <->  ( F/_ x A  /\  A  e. 
_V ) )
41, 3mpbiran2 943 . 2  |-  ( E! y A. x  y  =  A  <->  F/_ x A )
52, 4bitr4i 187 1  |-  ( E! y E. x  y  =  A  <->  E! y A. x  y  =  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1370    = wceq 1372   E.wex 1514   E!weu 2053    e. wcel 2175   F/_wnfc 2334   _Vcvv 2771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-sn 3638  df-pr 3639  df-uni 3850
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator