Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eusv2 | Unicode version |
Description: Two ways to express single-valuedness of a class expression . (Contributed by NM, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
Ref | Expression |
---|---|
eusv2.1 |
Ref | Expression |
---|---|
eusv2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eusv2.1 | . . 3 | |
2 | 1 | eusv2nf 4433 | . 2 |
3 | eusvnfb 4431 | . . 3 | |
4 | 1, 3 | mpbiran2 931 | . 2 |
5 | 2, 4 | bitr4i 186 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wal 1341 wceq 1343 wex 1480 weu 2014 wcel 2136 wnfc 2294 cvv 2725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-rex 2449 df-v 2727 df-sbc 2951 df-csb 3045 df-un 3119 df-sn 3581 df-pr 3582 df-uni 3789 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |