ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eusv2 Unicode version

Theorem eusv2 4504
Description: Two ways to express single-valuedness of a class expression  A ( x ). (Contributed by NM, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Hypothesis
Ref Expression
eusv2.1  |-  A  e. 
_V
Assertion
Ref Expression
eusv2  |-  ( E! y E. x  y  =  A  <->  E! y A. x  y  =  A )
Distinct variable groups:    x, y    y, A
Allowed substitution hint:    A( x)

Proof of Theorem eusv2
StepHypRef Expression
1 eusv2.1 . . 3  |-  A  e. 
_V
21eusv2nf 4503 . 2  |-  ( E! y E. x  y  =  A  <->  F/_ x A )
3 eusvnfb 4501 . . 3  |-  ( E! y A. x  y  =  A  <->  ( F/_ x A  /\  A  e. 
_V ) )
41, 3mpbiran2 944 . 2  |-  ( E! y A. x  y  =  A  <->  F/_ x A )
52, 4bitr4i 187 1  |-  ( E! y E. x  y  =  A  <->  E! y A. x  y  =  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1371    = wceq 1373   E.wex 1515   E!weu 2054    e. wcel 2176   F/_wnfc 2335   _Vcvv 2772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-sn 3639  df-pr 3640  df-uni 3851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator