Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eusv2 | GIF version |
Description: Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
Ref | Expression |
---|---|
eusv2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
eusv2 | ⊢ (∃!𝑦∃𝑥 𝑦 = 𝐴 ↔ ∃!𝑦∀𝑥 𝑦 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eusv2.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | eusv2nf 4434 | . 2 ⊢ (∃!𝑦∃𝑥 𝑦 = 𝐴 ↔ Ⅎ𝑥𝐴) |
3 | eusvnfb 4432 | . . 3 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ (Ⅎ𝑥𝐴 ∧ 𝐴 ∈ V)) | |
4 | 1, 3 | mpbiran2 931 | . 2 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ Ⅎ𝑥𝐴) |
5 | 2, 4 | bitr4i 186 | 1 ⊢ (∃!𝑦∃𝑥 𝑦 = 𝐴 ↔ ∃!𝑦∀𝑥 𝑦 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∀wal 1341 = wceq 1343 ∃wex 1480 ∃!weu 2014 ∈ wcel 2136 Ⅎwnfc 2295 Vcvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-sn 3582 df-pr 3583 df-uni 3790 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |