| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eusv2 | GIF version | ||
| Description: Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) | 
| Ref | Expression | 
|---|---|
| eusv2.1 | ⊢ 𝐴 ∈ V | 
| Ref | Expression | 
|---|---|
| eusv2 | ⊢ (∃!𝑦∃𝑥 𝑦 = 𝐴 ↔ ∃!𝑦∀𝑥 𝑦 = 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eusv2.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | eusv2nf 4491 | . 2 ⊢ (∃!𝑦∃𝑥 𝑦 = 𝐴 ↔ Ⅎ𝑥𝐴) | 
| 3 | eusvnfb 4489 | . . 3 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ (Ⅎ𝑥𝐴 ∧ 𝐴 ∈ V)) | |
| 4 | 1, 3 | mpbiran2 943 | . 2 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ Ⅎ𝑥𝐴) | 
| 5 | 2, 4 | bitr4i 187 | 1 ⊢ (∃!𝑦∃𝑥 𝑦 = 𝐴 ↔ ∃!𝑦∀𝑥 𝑦 = 𝐴) | 
| Colors of variables: wff set class | 
| Syntax hints: ↔ wb 105 ∀wal 1362 = wceq 1364 ∃wex 1506 ∃!weu 2045 ∈ wcel 2167 Ⅎwnfc 2326 Vcvv 2763 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-sn 3628 df-pr 3629 df-uni 3840 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |