ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnvfvrneq Unicode version

Theorem f1ocnvfvrneq 5829
Description: If the values of a one-to-one function for two arguments from the range of the function are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017.)
Assertion
Ref Expression
f1ocnvfvrneq  |-  ( ( F : A -1-1-> B  /\  ( C  e.  ran  F  /\  D  e.  ran  F ) )  ->  (
( `' F `  C )  =  ( `' F `  D )  ->  C  =  D ) )

Proof of Theorem f1ocnvfvrneq
StepHypRef Expression
1 f1f1orn 5515 . . 3  |-  ( F : A -1-1-> B  ->  F : A -1-1-onto-> ran  F )
2 f1ocnv 5517 . . 3  |-  ( F : A -1-1-onto-> ran  F  ->  `' F : ran  F -1-1-onto-> A )
3 f1of1 5503 . . 3  |-  ( `' F : ran  F -1-1-onto-> A  ->  `' F : ran  F -1-1-> A )
4 f1veqaeq 5816 . . . 4  |-  ( ( `' F : ran  F -1-1-> A  /\  ( C  e. 
ran  F  /\  D  e. 
ran  F ) )  ->  ( ( `' F `  C )  =  ( `' F `  D )  ->  C  =  D ) )
54ex 115 . . 3  |-  ( `' F : ran  F -1-1-> A  ->  ( ( C  e.  ran  F  /\  D  e.  ran  F )  ->  ( ( `' F `  C )  =  ( `' F `  D )  ->  C  =  D ) ) )
61, 2, 3, 54syl 18 . 2  |-  ( F : A -1-1-> B  -> 
( ( C  e. 
ran  F  /\  D  e. 
ran  F )  -> 
( ( `' F `  C )  =  ( `' F `  D )  ->  C  =  D ) ) )
76imp 124 1  |-  ( ( F : A -1-1-> B  /\  ( C  e.  ran  F  /\  D  e.  ran  F ) )  ->  (
( `' F `  C )  =  ( `' F `  D )  ->  C  =  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   `'ccnv 4662   ran crn 4664   -1-1->wf1 5255   -1-1-onto->wf1o 5257   ` cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator