ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnvfvrneq Unicode version

Theorem f1ocnvfvrneq 5906
Description: If the values of a one-to-one function for two arguments from the range of the function are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017.)
Assertion
Ref Expression
f1ocnvfvrneq  |-  ( ( F : A -1-1-> B  /\  ( C  e.  ran  F  /\  D  e.  ran  F ) )  ->  (
( `' F `  C )  =  ( `' F `  D )  ->  C  =  D ) )

Proof of Theorem f1ocnvfvrneq
StepHypRef Expression
1 f1f1orn 5583 . . 3  |-  ( F : A -1-1-> B  ->  F : A -1-1-onto-> ran  F )
2 f1ocnv 5585 . . 3  |-  ( F : A -1-1-onto-> ran  F  ->  `' F : ran  F -1-1-onto-> A )
3 f1of1 5571 . . 3  |-  ( `' F : ran  F -1-1-onto-> A  ->  `' F : ran  F -1-1-> A )
4 f1veqaeq 5893 . . . 4  |-  ( ( `' F : ran  F -1-1-> A  /\  ( C  e. 
ran  F  /\  D  e. 
ran  F ) )  ->  ( ( `' F `  C )  =  ( `' F `  D )  ->  C  =  D ) )
54ex 115 . . 3  |-  ( `' F : ran  F -1-1-> A  ->  ( ( C  e.  ran  F  /\  D  e.  ran  F )  ->  ( ( `' F `  C )  =  ( `' F `  D )  ->  C  =  D ) ) )
61, 2, 3, 54syl 18 . 2  |-  ( F : A -1-1-> B  -> 
( ( C  e. 
ran  F  /\  D  e. 
ran  F )  -> 
( ( `' F `  C )  =  ( `' F `  D )  ->  C  =  D ) ) )
76imp 124 1  |-  ( ( F : A -1-1-> B  /\  ( C  e.  ran  F  /\  D  e.  ran  F ) )  ->  (
( `' F `  C )  =  ( `' F `  D )  ->  C  =  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   `'ccnv 4718   ran crn 4720   -1-1->wf1 5315   -1-1-onto->wf1o 5317   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator