ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnvfvrneq Unicode version

Theorem f1ocnvfvrneq 5773
Description: If the values of a one-to-one function for two arguments from the range of the function are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017.)
Assertion
Ref Expression
f1ocnvfvrneq  |-  ( ( F : A -1-1-> B  /\  ( C  e.  ran  F  /\  D  e.  ran  F ) )  ->  (
( `' F `  C )  =  ( `' F `  D )  ->  C  =  D ) )

Proof of Theorem f1ocnvfvrneq
StepHypRef Expression
1 f1f1orn 5464 . . 3  |-  ( F : A -1-1-> B  ->  F : A -1-1-onto-> ran  F )
2 f1ocnv 5466 . . 3  |-  ( F : A -1-1-onto-> ran  F  ->  `' F : ran  F -1-1-onto-> A )
3 f1of1 5452 . . 3  |-  ( `' F : ran  F -1-1-onto-> A  ->  `' F : ran  F -1-1-> A )
4 f1veqaeq 5760 . . . 4  |-  ( ( `' F : ran  F -1-1-> A  /\  ( C  e. 
ran  F  /\  D  e. 
ran  F ) )  ->  ( ( `' F `  C )  =  ( `' F `  D )  ->  C  =  D ) )
54ex 115 . . 3  |-  ( `' F : ran  F -1-1-> A  ->  ( ( C  e.  ran  F  /\  D  e.  ran  F )  ->  ( ( `' F `  C )  =  ( `' F `  D )  ->  C  =  D ) ) )
61, 2, 3, 54syl 18 . 2  |-  ( F : A -1-1-> B  -> 
( ( C  e. 
ran  F  /\  D  e. 
ran  F )  -> 
( ( `' F `  C )  =  ( `' F `  D )  ->  C  =  D ) ) )
76imp 124 1  |-  ( ( F : A -1-1-> B  /\  ( C  e.  ran  F  /\  D  e.  ran  F ) )  ->  (
( `' F `  C )  =  ( `' F `  D )  ->  C  =  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2146   `'ccnv 4619   ran crn 4621   -1-1->wf1 5205   -1-1-onto->wf1o 5207   ` cfv 5208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator