ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oabexg Unicode version

Theorem f1oabexg 5533
Description: The class of all 1-1-onto functions mapping one set to another is a set. (Contributed by Paul Chapman, 25-Feb-2008.)
Hypothesis
Ref Expression
f1oabexg.1  |-  F  =  { f  |  ( f : A -1-1-onto-> B  /\  ph ) }
Assertion
Ref Expression
f1oabexg  |-  ( ( A  e.  C  /\  B  e.  D )  ->  F  e.  _V )
Distinct variable groups:    A, f    B, f
Allowed substitution hints:    ph( f)    C( f)    D( f)    F( f)

Proof of Theorem f1oabexg
StepHypRef Expression
1 f1oabexg.1 . 2  |-  F  =  { f  |  ( f : A -1-1-onto-> B  /\  ph ) }
2 f1of 5521 . . . . 5  |-  ( f : A -1-1-onto-> B  ->  f : A
--> B )
32anim1i 340 . . . 4  |-  ( ( f : A -1-1-onto-> B  /\  ph )  ->  ( f : A --> B  /\  ph ) )
43ss2abi 3264 . . 3  |-  { f  |  ( f : A -1-1-onto-> B  /\  ph ) }  C_  { f  |  ( f : A --> B  /\  ph ) }
5 eqid 2204 . . . 4  |-  { f  |  ( f : A --> B  /\  ph ) }  =  {
f  |  ( f : A --> B  /\  ph ) }
65fabexg 5462 . . 3  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { f  |  ( f : A --> B  /\  ph ) }  e.  _V )
7 ssexg 4182 . . 3  |-  ( ( { f  |  ( f : A -1-1-onto-> B  /\  ph ) }  C_  { f  |  ( f : A --> B  /\  ph ) }  /\  { f  |  ( f : A --> B  /\  ph ) }  e.  _V )  ->  { f  |  ( f : A -1-1-onto-> B  /\  ph ) }  e.  _V )
84, 6, 7sylancr 414 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { f  |  ( f : A -1-1-onto-> B  /\  ph ) }  e.  _V )
91, 8eqeltrid 2291 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  F  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175   {cab 2190   _Vcvv 2771    C_ wss 3165   -->wf 5266   -1-1-onto->wf1o 5269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-xp 4680  df-rel 4681  df-cnv 4682  df-dm 4684  df-rn 4685  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-f1o 5277
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator