ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oabexg Unicode version

Theorem f1oabexg 5583
Description: The class of all 1-1-onto functions mapping one set to another is a set. (Contributed by Paul Chapman, 25-Feb-2008.)
Hypothesis
Ref Expression
f1oabexg.1  |-  F  =  { f  |  ( f : A -1-1-onto-> B  /\  ph ) }
Assertion
Ref Expression
f1oabexg  |-  ( ( A  e.  C  /\  B  e.  D )  ->  F  e.  _V )
Distinct variable groups:    A, f    B, f
Allowed substitution hints:    ph( f)    C( f)    D( f)    F( f)

Proof of Theorem f1oabexg
StepHypRef Expression
1 f1oabexg.1 . 2  |-  F  =  { f  |  ( f : A -1-1-onto-> B  /\  ph ) }
2 f1of 5571 . . . . 5  |-  ( f : A -1-1-onto-> B  ->  f : A
--> B )
32anim1i 340 . . . 4  |-  ( ( f : A -1-1-onto-> B  /\  ph )  ->  ( f : A --> B  /\  ph ) )
43ss2abi 3296 . . 3  |-  { f  |  ( f : A -1-1-onto-> B  /\  ph ) }  C_  { f  |  ( f : A --> B  /\  ph ) }
5 eqid 2229 . . . 4  |-  { f  |  ( f : A --> B  /\  ph ) }  =  {
f  |  ( f : A --> B  /\  ph ) }
65fabexg 5512 . . 3  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { f  |  ( f : A --> B  /\  ph ) }  e.  _V )
7 ssexg 4222 . . 3  |-  ( ( { f  |  ( f : A -1-1-onto-> B  /\  ph ) }  C_  { f  |  ( f : A --> B  /\  ph ) }  /\  { f  |  ( f : A --> B  /\  ph ) }  e.  _V )  ->  { f  |  ( f : A -1-1-onto-> B  /\  ph ) }  e.  _V )
84, 6, 7sylancr 414 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { f  |  ( f : A -1-1-onto-> B  /\  ph ) }  e.  _V )
91, 8eqeltrid 2316 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  F  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   {cab 2215   _Vcvv 2799    C_ wss 3197   -->wf 5313   -1-1-onto->wf1o 5316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-rel 4725  df-cnv 4726  df-dm 4728  df-rn 4729  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-f1o 5324
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator