ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oabexg Unicode version

Theorem f1oabexg 5473
Description: The class of all 1-1-onto functions mapping one set to another is a set. (Contributed by Paul Chapman, 25-Feb-2008.)
Hypothesis
Ref Expression
f1oabexg.1  |-  F  =  { f  |  ( f : A -1-1-onto-> B  /\  ph ) }
Assertion
Ref Expression
f1oabexg  |-  ( ( A  e.  C  /\  B  e.  D )  ->  F  e.  _V )
Distinct variable groups:    A, f    B, f
Allowed substitution hints:    ph( f)    C( f)    D( f)    F( f)

Proof of Theorem f1oabexg
StepHypRef Expression
1 f1oabexg.1 . 2  |-  F  =  { f  |  ( f : A -1-1-onto-> B  /\  ph ) }
2 f1of 5461 . . . . 5  |-  ( f : A -1-1-onto-> B  ->  f : A
--> B )
32anim1i 340 . . . 4  |-  ( ( f : A -1-1-onto-> B  /\  ph )  ->  ( f : A --> B  /\  ph ) )
43ss2abi 3227 . . 3  |-  { f  |  ( f : A -1-1-onto-> B  /\  ph ) }  C_  { f  |  ( f : A --> B  /\  ph ) }
5 eqid 2177 . . . 4  |-  { f  |  ( f : A --> B  /\  ph ) }  =  {
f  |  ( f : A --> B  /\  ph ) }
65fabexg 5403 . . 3  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { f  |  ( f : A --> B  /\  ph ) }  e.  _V )
7 ssexg 4142 . . 3  |-  ( ( { f  |  ( f : A -1-1-onto-> B  /\  ph ) }  C_  { f  |  ( f : A --> B  /\  ph ) }  /\  { f  |  ( f : A --> B  /\  ph ) }  e.  _V )  ->  { f  |  ( f : A -1-1-onto-> B  /\  ph ) }  e.  _V )
84, 6, 7sylancr 414 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { f  |  ( f : A -1-1-onto-> B  /\  ph ) }  e.  _V )
91, 8eqeltrid 2264 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  F  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   {cab 2163   _Vcvv 2737    C_ wss 3129   -->wf 5212   -1-1-onto->wf1o 5215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-xp 4632  df-rel 4633  df-cnv 4634  df-dm 4636  df-rn 4637  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-f1o 5223
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator