Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1f1orn | GIF version |
Description: A one-to-one function maps one-to-one onto its range. (Contributed by NM, 4-Sep-2004.) |
Ref | Expression |
---|---|
f1f1orn | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴–1-1-onto→ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1fn 5405 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
2 | df-f1 5203 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
3 | 2 | simprbi 273 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡𝐹) |
4 | f1orn 5452 | . 2 ⊢ (𝐹:𝐴–1-1-onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹)) | |
5 | 1, 3, 4 | sylanbrc 415 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴–1-1-onto→ran 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ◡ccnv 4610 ran crn 4612 Fun wfun 5192 Fn wfn 5193 ⟶wf 5194 –1-1→wf1 5195 –1-1-onto→wf1o 5197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 |
This theorem is referenced by: f1ores 5457 f1cnv 5466 f1cocnv1 5472 f1ocnvfvrneq 5761 ssenen 6829 f1dmvrnfibi 6921 cc2lem 7228 |
Copyright terms: Public domain | W3C validator |