![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1f1orn | GIF version |
Description: A one-to-one function maps one-to-one onto its range. (Contributed by NM, 4-Sep-2004.) |
Ref | Expression |
---|---|
f1f1orn | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴–1-1-onto→ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1fn 5461 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
2 | df-f1 5259 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
3 | 2 | simprbi 275 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡𝐹) |
4 | f1orn 5510 | . 2 ⊢ (𝐹:𝐴–1-1-onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹)) | |
5 | 1, 3, 4 | sylanbrc 417 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴–1-1-onto→ran 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ◡ccnv 4658 ran crn 4660 Fun wfun 5248 Fn wfn 5249 ⟶wf 5250 –1-1→wf1 5251 –1-1-onto→wf1o 5253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 |
This theorem is referenced by: f1ores 5515 f1cnv 5524 f1cocnv1 5530 f1ocnvfvrneq 5825 ssenen 6907 f1dmvrnfibi 7003 cc2lem 7326 4sqlem11 12539 xpsff1o2 12934 imasgrpf1 13182 conjsubgen 13348 imasrngf1 13453 imasringf1 13561 |
Copyright terms: Public domain | W3C validator |