ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1f1orn GIF version

Theorem f1f1orn 5332
Description: A one-to-one function maps one-to-one onto its range. (Contributed by NM, 4-Sep-2004.)
Assertion
Ref Expression
f1f1orn (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)

Proof of Theorem f1f1orn
StepHypRef Expression
1 f1fn 5286 . 2 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
2 df-f1 5084 . . 3 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
32simprbi 271 . 2 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
4 f1orn 5331 . 2 (𝐹:𝐴1-1-onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹))
51, 3, 4sylanbrc 411 1 (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  ccnv 4496  ran crn 4498  Fun wfun 5073   Fn wfn 5074  wf 5075  1-1wf1 5076  1-1-ontowf1o 5078
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-11 1465  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095
This theorem depends on definitions:  df-bi 116  df-3an 945  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-in 3041  df-ss 3048  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086
This theorem is referenced by:  f1ores  5336  f1cnv  5345  f1cocnv1  5351  f1ocnvfvrneq  5635  ssenen  6696  f1dmvrnfibi  6782
  Copyright terms: Public domain W3C validator