ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1f1orn GIF version

Theorem f1f1orn 5582
Description: A one-to-one function maps one-to-one onto its range. (Contributed by NM, 4-Sep-2004.)
Assertion
Ref Expression
f1f1orn (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)

Proof of Theorem f1f1orn
StepHypRef Expression
1 f1fn 5532 . 2 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
2 df-f1 5322 . . 3 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
32simprbi 275 . 2 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
4 f1orn 5581 . 2 (𝐹:𝐴1-1-onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹))
51, 3, 4sylanbrc 417 1 (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  ccnv 4717  ran crn 4719  Fun wfun 5311   Fn wfn 5312  wf 5313  1-1wf1 5314  1-1-ontowf1o 5316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324
This theorem is referenced by:  f1ores  5586  f1cnv  5595  f1cocnv1  5601  f1ocnvfvrneq  5905  ssenen  7008  f1dmvrnfibi  7107  cc2lem  7448  4sqlem11  12919  xpsff1o2  13379  imasmndf1  13482  imasgrpf1  13644  conjsubgen  13810  imasrngf1  13915  imasringf1  14023  usgrf1o  15966  uspgrf1oedg  15968
  Copyright terms: Public domain W3C validator