ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1f1orn GIF version

Theorem f1f1orn 5555
Description: A one-to-one function maps one-to-one onto its range. (Contributed by NM, 4-Sep-2004.)
Assertion
Ref Expression
f1f1orn (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)

Proof of Theorem f1f1orn
StepHypRef Expression
1 f1fn 5505 . 2 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
2 df-f1 5295 . . 3 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
32simprbi 275 . 2 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
4 f1orn 5554 . 2 (𝐹:𝐴1-1-onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹))
51, 3, 4sylanbrc 417 1 (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  ccnv 4692  ran crn 4694  Fun wfun 5284   Fn wfn 5285  wf 5286  1-1wf1 5287  1-1-ontowf1o 5289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-in 3180  df-ss 3187  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297
This theorem is referenced by:  f1ores  5559  f1cnv  5568  f1cocnv1  5574  f1ocnvfvrneq  5874  ssenen  6973  f1dmvrnfibi  7072  cc2lem  7413  4sqlem11  12839  xpsff1o2  13298  imasmndf1  13401  imasgrpf1  13563  conjsubgen  13729  imasrngf1  13834  imasringf1  13942
  Copyright terms: Public domain W3C validator