| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1f1orn | GIF version | ||
| Description: A one-to-one function maps one-to-one onto its range. (Contributed by NM, 4-Sep-2004.) |
| Ref | Expression |
|---|---|
| f1f1orn | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴–1-1-onto→ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1fn 5465 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | df-f1 5263 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
| 3 | 2 | simprbi 275 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡𝐹) |
| 4 | f1orn 5514 | . 2 ⊢ (𝐹:𝐴–1-1-onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹)) | |
| 5 | 1, 3, 4 | sylanbrc 417 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴–1-1-onto→ran 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ◡ccnv 4662 ran crn 4664 Fun wfun 5252 Fn wfn 5253 ⟶wf 5254 –1-1→wf1 5255 –1-1-onto→wf1o 5257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 |
| This theorem is referenced by: f1ores 5519 f1cnv 5528 f1cocnv1 5534 f1ocnvfvrneq 5829 ssenen 6912 f1dmvrnfibi 7010 cc2lem 7333 4sqlem11 12570 xpsff1o2 12994 imasgrpf1 13242 conjsubgen 13408 imasrngf1 13513 imasringf1 13621 |
| Copyright terms: Public domain | W3C validator |