ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1f1orn GIF version

Theorem f1f1orn 5512
Description: A one-to-one function maps one-to-one onto its range. (Contributed by NM, 4-Sep-2004.)
Assertion
Ref Expression
f1f1orn (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)

Proof of Theorem f1f1orn
StepHypRef Expression
1 f1fn 5462 . 2 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
2 df-f1 5260 . . 3 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
32simprbi 275 . 2 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
4 f1orn 5511 . 2 (𝐹:𝐴1-1-onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹))
51, 3, 4sylanbrc 417 1 (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  ccnv 4659  ran crn 4661  Fun wfun 5249   Fn wfn 5250  wf 5251  1-1wf1 5252  1-1-ontowf1o 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-in 3160  df-ss 3167  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262
This theorem is referenced by:  f1ores  5516  f1cnv  5525  f1cocnv1  5531  f1ocnvfvrneq  5826  ssenen  6909  f1dmvrnfibi  7005  cc2lem  7328  4sqlem11  12542  xpsff1o2  12937  imasgrpf1  13185  conjsubgen  13351  imasrngf1  13456  imasringf1  13564
  Copyright terms: Public domain W3C validator