ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1f1orn GIF version

Theorem f1f1orn 5533
Description: A one-to-one function maps one-to-one onto its range. (Contributed by NM, 4-Sep-2004.)
Assertion
Ref Expression
f1f1orn (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)

Proof of Theorem f1f1orn
StepHypRef Expression
1 f1fn 5483 . 2 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
2 df-f1 5276 . . 3 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
32simprbi 275 . 2 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
4 f1orn 5532 . 2 (𝐹:𝐴1-1-onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹))
51, 3, 4sylanbrc 417 1 (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  ccnv 4674  ran crn 4676  Fun wfun 5265   Fn wfn 5266  wf 5267  1-1wf1 5268  1-1-ontowf1o 5270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278
This theorem is referenced by:  f1ores  5537  f1cnv  5546  f1cocnv1  5552  f1ocnvfvrneq  5851  ssenen  6948  f1dmvrnfibi  7046  cc2lem  7378  4sqlem11  12724  xpsff1o2  13183  imasmndf1  13286  imasgrpf1  13448  conjsubgen  13614  imasrngf1  13719  imasringf1  13827
  Copyright terms: Public domain W3C validator