![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1f1orn | GIF version |
Description: A one-to-one function maps one-to-one onto its range. (Contributed by NM, 4-Sep-2004.) |
Ref | Expression |
---|---|
f1f1orn | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴–1-1-onto→ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1fn 5286 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
2 | df-f1 5084 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
3 | 2 | simprbi 271 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡𝐹) |
4 | f1orn 5331 | . 2 ⊢ (𝐹:𝐴–1-1-onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹)) | |
5 | 1, 3, 4 | sylanbrc 411 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴–1-1-onto→ran 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ◡ccnv 4496 ran crn 4498 Fun wfun 5073 Fn wfn 5074 ⟶wf 5075 –1-1→wf1 5076 –1-1-onto→wf1o 5078 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-11 1465 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-in 3041 df-ss 3048 df-f 5083 df-f1 5084 df-fo 5085 df-f1o 5086 |
This theorem is referenced by: f1ores 5336 f1cnv 5345 f1cocnv1 5351 f1ocnvfvrneq 5635 ssenen 6696 f1dmvrnfibi 6782 |
Copyright terms: Public domain | W3C validator |