| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1f1orn | GIF version | ||
| Description: A one-to-one function maps one-to-one onto its range. (Contributed by NM, 4-Sep-2004.) |
| Ref | Expression |
|---|---|
| f1f1orn | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴–1-1-onto→ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1fn 5532 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | df-f1 5322 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
| 3 | 2 | simprbi 275 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡𝐹) |
| 4 | f1orn 5581 | . 2 ⊢ (𝐹:𝐴–1-1-onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹)) | |
| 5 | 1, 3, 4 | sylanbrc 417 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴–1-1-onto→ran 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ◡ccnv 4717 ran crn 4719 Fun wfun 5311 Fn wfn 5312 ⟶wf 5313 –1-1→wf1 5314 –1-1-onto→wf1o 5316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 |
| This theorem is referenced by: f1ores 5586 f1cnv 5595 f1cocnv1 5601 f1ocnvfvrneq 5905 ssenen 7008 f1dmvrnfibi 7107 cc2lem 7448 4sqlem11 12919 xpsff1o2 13379 imasmndf1 13482 imasgrpf1 13644 conjsubgen 13810 imasrngf1 13915 imasringf1 14023 usgrf1o 15966 uspgrf1oedg 15968 |
| Copyright terms: Public domain | W3C validator |