| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1f1orn | GIF version | ||
| Description: A one-to-one function maps one-to-one onto its range. (Contributed by NM, 4-Sep-2004.) |
| Ref | Expression |
|---|---|
| f1f1orn | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴–1-1-onto→ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1fn 5483 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | df-f1 5276 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
| 3 | 2 | simprbi 275 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡𝐹) |
| 4 | f1orn 5532 | . 2 ⊢ (𝐹:𝐴–1-1-onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹)) | |
| 5 | 1, 3, 4 | sylanbrc 417 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴–1-1-onto→ran 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ◡ccnv 4674 ran crn 4676 Fun wfun 5265 Fn wfn 5266 ⟶wf 5267 –1-1→wf1 5268 –1-1-onto→wf1o 5270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 |
| This theorem is referenced by: f1ores 5537 f1cnv 5546 f1cocnv1 5552 f1ocnvfvrneq 5851 ssenen 6948 f1dmvrnfibi 7046 cc2lem 7378 4sqlem11 12724 xpsff1o2 13183 imasmndf1 13286 imasgrpf1 13448 conjsubgen 13614 imasrngf1 13719 imasringf1 13827 |
| Copyright terms: Public domain | W3C validator |