ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1cocnv1 Unicode version

Theorem f1cocnv1 5296
Description: Composition of an injective function with its converse. (Contributed by FL, 11-Nov-2011.)
Assertion
Ref Expression
f1cocnv1  |-  ( F : A -1-1-> B  -> 
( `' F  o.  F )  =  (  _I  |`  A )
)

Proof of Theorem f1cocnv1
StepHypRef Expression
1 f1f1orn 5277 . 2  |-  ( F : A -1-1-> B  ->  F : A -1-1-onto-> ran  F )
2 f1ococnv1 5295 . 2  |-  ( F : A -1-1-onto-> ran  F  ->  ( `' F  o.  F
)  =  (  _I  |`  A ) )
31, 2syl 14 1  |-  ( F : A -1-1-> B  -> 
( `' F  o.  F )  =  (  _I  |`  A )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1290    _I cid 4124   `'ccnv 4451   ran crn 4453    |` cres 4454    o. ccom 4456   -1-1->wf1 5025   -1-1-onto->wf1o 5027
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-br 3852  df-opab 3906  df-id 4129  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035
This theorem is referenced by:  f1eqcocnv  5584
  Copyright terms: Public domain W3C validator