ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsff1o2 Unicode version

Theorem xpsff1o2 12770
Description: The function appearing in xpsval 12771 is a bijection from the cartesian product to the indexed cartesian product indexed on the pair  2o  =  { (/)
,  1o }. (Contributed by Mario Carneiro, 24-Jan-2015.)
Hypothesis
Ref Expression
xpsff1o.f  |-  F  =  ( x  e.  A ,  y  e.  B  |->  { <. (/) ,  x >. , 
<. 1o ,  y >. } )
Assertion
Ref Expression
xpsff1o2  |-  F :
( A  X.  B
)
-1-1-onto-> ran  F
Distinct variable groups:    x, A, y   
x, B, y
Allowed substitution hints:    F( x, y)

Proof of Theorem xpsff1o2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 xpsff1o.f . . 3  |-  F  =  ( x  e.  A ,  y  e.  B  |->  { <. (/) ,  x >. , 
<. 1o ,  y >. } )
21xpsff1o 12768 . 2  |-  F :
( A  X.  B
)
-1-1-onto-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )
3 f1of1 5461 . 2  |-  ( F : ( A  X.  B ) -1-1-onto-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  ->  F : ( A  X.  B )
-1-1->
X_ k  e.  2o  if ( k  =  (/) ,  A ,  B ) )
4 f1f1orn 5473 . 2  |-  ( F : ( A  X.  B ) -1-1-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  ->  F : ( A  X.  B ) -1-1-onto-> ran  F )
52, 3, 4mp2b 8 1  |-  F :
( A  X.  B
)
-1-1-onto-> ran  F
Colors of variables: wff set class
Syntax hints:    = wceq 1353   (/)c0 3423   ifcif 3535   {cpr 3594   <.cop 3596    X. cxp 4625   ran crn 4628   -1-1->wf1 5214   -1-1-onto->wf1o 5216    e. cmpo 5877   1oc1o 6410   2oc2o 6411   X_cixp 6698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-iord 4367  df-on 4369  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-1o 6417  df-2o 6418  df-er 6535  df-ixp 6699  df-en 6741  df-fin 6743
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator