ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsff1o2 Unicode version

Theorem xpsff1o2 12789
Description: The function appearing in xpsval 12790 is a bijection from the cartesian product to the indexed cartesian product indexed on the pair  2o  =  { (/)
,  1o }. (Contributed by Mario Carneiro, 24-Jan-2015.)
Hypothesis
Ref Expression
xpsff1o.f  |-  F  =  ( x  e.  A ,  y  e.  B  |->  { <. (/) ,  x >. , 
<. 1o ,  y >. } )
Assertion
Ref Expression
xpsff1o2  |-  F :
( A  X.  B
)
-1-1-onto-> ran  F
Distinct variable groups:    x, A, y   
x, B, y
Allowed substitution hints:    F( x, y)

Proof of Theorem xpsff1o2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 xpsff1o.f . . 3  |-  F  =  ( x  e.  A ,  y  e.  B  |->  { <. (/) ,  x >. , 
<. 1o ,  y >. } )
21xpsff1o 12787 . 2  |-  F :
( A  X.  B
)
-1-1-onto-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )
3 f1of1 5472 . 2  |-  ( F : ( A  X.  B ) -1-1-onto-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  ->  F : ( A  X.  B )
-1-1->
X_ k  e.  2o  if ( k  =  (/) ,  A ,  B ) )
4 f1f1orn 5484 . 2  |-  ( F : ( A  X.  B ) -1-1-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  ->  F : ( A  X.  B ) -1-1-onto-> ran  F )
52, 3, 4mp2b 8 1  |-  F :
( A  X.  B
)
-1-1-onto-> ran  F
Colors of variables: wff set class
Syntax hints:    = wceq 1363   (/)c0 3434   ifcif 3546   {cpr 3605   <.cop 3607    X. cxp 4636   ran crn 4639   -1-1->wf1 5225   -1-1-onto->wf1o 5227    e. cmpo 5890   1oc1o 6424   2oc2o 6425   X_cixp 6712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-iord 4378  df-on 4380  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-1o 6431  df-2o 6432  df-er 6549  df-ixp 6713  df-en 6755  df-fin 6757
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator