ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsff1o2 Unicode version

Theorem xpsff1o2 13258
Description: The function appearing in xpsval 13259 is a bijection from the cartesian product to the indexed cartesian product indexed on the pair  2o  =  { (/)
,  1o }. (Contributed by Mario Carneiro, 24-Jan-2015.)
Hypothesis
Ref Expression
xpsff1o.f  |-  F  =  ( x  e.  A ,  y  e.  B  |->  { <. (/) ,  x >. , 
<. 1o ,  y >. } )
Assertion
Ref Expression
xpsff1o2  |-  F :
( A  X.  B
)
-1-1-onto-> ran  F
Distinct variable groups:    x, A, y   
x, B, y
Allowed substitution hints:    F( x, y)

Proof of Theorem xpsff1o2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 xpsff1o.f . . 3  |-  F  =  ( x  e.  A ,  y  e.  B  |->  { <. (/) ,  x >. , 
<. 1o ,  y >. } )
21xpsff1o 13256 . 2  |-  F :
( A  X.  B
)
-1-1-onto-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )
3 f1of1 5533 . 2  |-  ( F : ( A  X.  B ) -1-1-onto-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  ->  F : ( A  X.  B )
-1-1->
X_ k  e.  2o  if ( k  =  (/) ,  A ,  B ) )
4 f1f1orn 5545 . 2  |-  ( F : ( A  X.  B ) -1-1-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  ->  F : ( A  X.  B ) -1-1-onto-> ran  F )
52, 3, 4mp2b 8 1  |-  F :
( A  X.  B
)
-1-1-onto-> ran  F
Colors of variables: wff set class
Syntax hints:    = wceq 1373   (/)c0 3464   ifcif 3575   {cpr 3639   <.cop 3641    X. cxp 4681   ran crn 4684   -1-1->wf1 5277   -1-1-onto->wf1o 5279    e. cmpo 5959   1oc1o 6508   2oc2o 6509   X_cixp 6798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-1o 6515  df-2o 6516  df-er 6633  df-ixp 6799  df-en 6841  df-fin 6843
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator