ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq123 Unicode version

Theorem feq123 5465
Description: Equality theorem for functions. (Contributed by FL, 16-Nov-2008.)
Assertion
Ref Expression
feq123  |-  ( ( F  =  G  /\  A  =  C  /\  B  =  D )  ->  ( F : A --> B 
<->  G : C --> D ) )

Proof of Theorem feq123
StepHypRef Expression
1 simp1 1021 . 2  |-  ( ( F  =  G  /\  A  =  C  /\  B  =  D )  ->  F  =  G )
2 simp2 1022 . 2  |-  ( ( F  =  G  /\  A  =  C  /\  B  =  D )  ->  A  =  C )
3 simp3 1023 . 2  |-  ( ( F  =  G  /\  A  =  C  /\  B  =  D )  ->  B  =  D )
41, 2, 3feq123d 5464 1  |-  ( ( F  =  G  /\  A  =  C  /\  B  =  D )  ->  ( F : A --> B 
<->  G : C --> D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 1002    = wceq 1395   -->wf 5314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-fun 5320  df-fn 5321  df-f 5322
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator