ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq123 Unicode version

Theorem feq123 5376
Description: Equality theorem for functions. (Contributed by FL, 16-Nov-2008.)
Assertion
Ref Expression
feq123  |-  ( ( F  =  G  /\  A  =  C  /\  B  =  D )  ->  ( F : A --> B 
<->  G : C --> D ) )

Proof of Theorem feq123
StepHypRef Expression
1 simp1 999 . 2  |-  ( ( F  =  G  /\  A  =  C  /\  B  =  D )  ->  F  =  G )
2 simp2 1000 . 2  |-  ( ( F  =  G  /\  A  =  C  /\  B  =  D )  ->  A  =  C )
3 simp3 1001 . 2  |-  ( ( F  =  G  /\  A  =  C  /\  B  =  D )  ->  B  =  D )
41, 2, 3feq123d 5375 1  |-  ( ( F  =  G  /\  A  =  C  /\  B  =  D )  ->  ( F : A --> B 
<->  G : C --> D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    = wceq 1364   -->wf 5231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-opab 4080  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-fun 5237  df-fn 5238  df-f 5239
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator