| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq123d | Unicode version | ||
| Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq12d.1 |
|
| feq12d.2 |
|
| feq123d.3 |
|
| Ref | Expression |
|---|---|
| feq123d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq12d.1 |
. . 3
| |
| 2 | feq12d.2 |
. . 3
| |
| 3 | 1, 2 | feq12d 5425 |
. 2
|
| 4 | feq123d.3 |
. . 3
| |
| 5 | feq3 5420 |
. . 3
| |
| 6 | 4, 5 | syl 14 |
. 2
|
| 7 | 3, 6 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-fun 5282 df-fn 5283 df-f 5284 |
| This theorem is referenced by: feq123 5427 feq23d 5431 csbwrdg 11045 isuhgrm 15742 uhgreq12g 15747 isuhgropm 15752 uhgrun 15757 isupgren 15766 upgrop 15775 isumgren 15776 upgrun 15792 umgrun 15794 |
| Copyright terms: Public domain | W3C validator |