ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq123d Unicode version

Theorem feq123d 5348
Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
feq12d.1  |-  ( ph  ->  F  =  G )
feq12d.2  |-  ( ph  ->  A  =  B )
feq123d.3  |-  ( ph  ->  C  =  D )
Assertion
Ref Expression
feq123d  |-  ( ph  ->  ( F : A --> C 
<->  G : B --> D ) )

Proof of Theorem feq123d
StepHypRef Expression
1 feq12d.1 . . 3  |-  ( ph  ->  F  =  G )
2 feq12d.2 . . 3  |-  ( ph  ->  A  =  B )
31, 2feq12d 5347 . 2  |-  ( ph  ->  ( F : A --> C 
<->  G : B --> C ) )
4 feq123d.3 . . 3  |-  ( ph  ->  C  =  D )
5 feq3 5342 . . 3  |-  ( C  =  D  ->  ( G : B --> C  <->  G : B
--> D ) )
64, 5syl 14 . 2  |-  ( ph  ->  ( G : B --> C 
<->  G : B --> D ) )
73, 6bitrd 188 1  |-  ( ph  ->  ( F : A --> C 
<->  G : B --> D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353   -->wf 5204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-fun 5210  df-fn 5211  df-f 5212
This theorem is referenced by:  feq123  5349  feq23d  5353
  Copyright terms: Public domain W3C validator