| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq123d | Unicode version | ||
| Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq12d.1 |
|
| feq12d.2 |
|
| feq123d.3 |
|
| Ref | Expression |
|---|---|
| feq123d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq12d.1 |
. . 3
| |
| 2 | feq12d.2 |
. . 3
| |
| 3 | 1, 2 | feq12d 5398 |
. 2
|
| 4 | feq123d.3 |
. . 3
| |
| 5 | feq3 5393 |
. . 3
| |
| 6 | 4, 5 | syl 14 |
. 2
|
| 7 | 3, 6 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-fun 5261 df-fn 5262 df-f 5263 |
| This theorem is referenced by: feq123 5400 feq23d 5404 csbwrdg 10966 |
| Copyright terms: Public domain | W3C validator |