| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq123 | GIF version | ||
| Description: Equality theorem for functions. (Contributed by FL, 16-Nov-2008.) |
| Ref | Expression |
|---|---|
| feq123 | ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐶⟶𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1000 | . 2 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 𝐹 = 𝐺) | |
| 2 | simp2 1001 | . 2 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 𝐴 = 𝐶) | |
| 3 | simp3 1002 | . 2 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 𝐵 = 𝐷) | |
| 4 | 1, 2, 3 | feq123d 5436 | 1 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐶⟶𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 981 = wceq 1373 ⟶wf 5286 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-fun 5292 df-fn 5293 df-f 5294 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |