ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fveu Unicode version

Theorem fveu 5550
Description: The value of a function at a unique point. (Contributed by Scott Fenton, 6-Oct-2017.)
Assertion
Ref Expression
fveu  |-  ( E! x  A F x  ->  ( F `  A )  =  U. { x  |  A F x } )
Distinct variable groups:    x, F    x, A

Proof of Theorem fveu
StepHypRef Expression
1 df-fv 5266 . 2  |-  ( F `
 A )  =  ( iota x A F x )
2 iotauni 5231 . 2  |-  ( E! x  A F x  ->  ( iota x A F x )  = 
U. { x  |  A F x }
)
31, 2eqtrid 2241 1  |-  ( E! x  A F x  ->  ( F `  A )  =  U. { x  |  A F x } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   E!weu 2045   {cab 2182   U.cuni 3839   class class class wbr 4033   iotacio 5217   ` cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-sn 3628  df-pr 3629  df-uni 3840  df-iota 5219  df-fv 5266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator