Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fveu Unicode version

Theorem fveu 5379
 Description: The value of a function at a unique point. (Contributed by Scott Fenton, 6-Oct-2017.)
Assertion
Ref Expression
fveu
Distinct variable groups:   ,   ,

Proof of Theorem fveu
StepHypRef Expression
1 df-fv 5099 . 2
2 iotauni 5068 . 2
31, 2syl5eq 2160 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1314  weu 1975  cab 2101  cuni 3704   class class class wbr 3897  cio 5054  cfv 5091 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097 This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-rex 2397  df-v 2660  df-sbc 2881  df-un 3043  df-sn 3501  df-pr 3502  df-uni 3705  df-iota 5056  df-fv 5099 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator