ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fveu Unicode version

Theorem fveu 5488
Description: The value of a function at a unique point. (Contributed by Scott Fenton, 6-Oct-2017.)
Assertion
Ref Expression
fveu  |-  ( E! x  A F x  ->  ( F `  A )  =  U. { x  |  A F x } )
Distinct variable groups:    x, F    x, A

Proof of Theorem fveu
StepHypRef Expression
1 df-fv 5206 . 2  |-  ( F `
 A )  =  ( iota x A F x )
2 iotauni 5172 . 2  |-  ( E! x  A F x  ->  ( iota x A F x )  = 
U. { x  |  A F x }
)
31, 2eqtrid 2215 1  |-  ( E! x  A F x  ->  ( F `  A )  =  U. { x  |  A F x } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348   E!weu 2019   {cab 2156   U.cuni 3796   class class class wbr 3989   iotacio 5158   ` cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-sn 3589  df-pr 3590  df-uni 3797  df-iota 5160  df-fv 5206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator