ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fveu Unicode version

Theorem fveu 5460
Description: The value of a function at a unique point. (Contributed by Scott Fenton, 6-Oct-2017.)
Assertion
Ref Expression
fveu  |-  ( E! x  A F x  ->  ( F `  A )  =  U. { x  |  A F x } )
Distinct variable groups:    x, F    x, A

Proof of Theorem fveu
StepHypRef Expression
1 df-fv 5178 . 2  |-  ( F `
 A )  =  ( iota x A F x )
2 iotauni 5147 . 2  |-  ( E! x  A F x  ->  ( iota x A F x )  = 
U. { x  |  A F x }
)
31, 2syl5eq 2202 1  |-  ( E! x  A F x  ->  ( F `  A )  =  U. { x  |  A F x } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1335   E!weu 2006   {cab 2143   U.cuni 3772   class class class wbr 3965   iotacio 5133   ` cfv 5170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-rex 2441  df-v 2714  df-sbc 2938  df-un 3106  df-sn 3566  df-pr 3567  df-uni 3773  df-iota 5135  df-fv 5178
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator