| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fveu | GIF version | ||
| Description: The value of a function at a unique point. (Contributed by Scott Fenton, 6-Oct-2017.) |
| Ref | Expression |
|---|---|
| fveu | ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv 5278 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
| 2 | iotauni 5243 | . 2 ⊢ (∃!𝑥 𝐴𝐹𝑥 → (℩𝑥𝐴𝐹𝑥) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) | |
| 3 | 1, 2 | eqtrid 2249 | 1 ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∃!weu 2053 {cab 2190 ∪ cuni 3849 class class class wbr 4043 ℩cio 5229 ‘cfv 5270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-sn 3638 df-pr 3639 df-uni 3850 df-iota 5231 df-fv 5278 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |