ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fveu GIF version

Theorem fveu 5281
Description: The value of a function at a unique point. (Contributed by Scott Fenton, 6-Oct-2017.)
Assertion
Ref Expression
fveu (∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = {𝑥𝐴𝐹𝑥})
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem fveu
StepHypRef Expression
1 df-fv 5010 . 2 (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
2 iotauni 4979 . 2 (∃!𝑥 𝐴𝐹𝑥 → (℩𝑥𝐴𝐹𝑥) = {𝑥𝐴𝐹𝑥})
31, 2syl5eq 2132 1 (∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = {𝑥𝐴𝐹𝑥})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1289  ∃!weu 1948  {cab 2074   cuni 3648   class class class wbr 3837  cio 4965  cfv 5002
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-rex 2365  df-v 2621  df-sbc 2839  df-un 3001  df-sn 3447  df-pr 3448  df-uni 3649  df-iota 4967  df-fv 5010
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator