ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tz6.12-2 Unicode version

Theorem tz6.12-2 5618
Description: Function value when  F is not a function. Theorem 6.12(2) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
tz6.12-2  |-  ( -.  E! x  A F x  ->  ( F `  A )  =  (/) )
Distinct variable groups:    x, F    x, A

Proof of Theorem tz6.12-2
StepHypRef Expression
1 df-fv 5326 . 2  |-  ( F `
 A )  =  ( iota x A F x )
2 iotanul 5294 . 2  |-  ( -.  E! x  A F x  ->  ( iota x A F x )  =  (/) )
31, 2eqtrid 2274 1  |-  ( -.  E! x  A F x  ->  ( F `  A )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1395   E!weu 2077   (/)c0 3491   class class class wbr 4083   iotacio 5276   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492  df-sn 3672  df-uni 3889  df-iota 5278  df-fv 5326
This theorem is referenced by:  fvprc  5621  ndmfvg  5658  nfunsn  5664
  Copyright terms: Public domain W3C validator