ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tz6.12-2 Unicode version

Theorem tz6.12-2 5487
Description: Function value when  F is not a function. Theorem 6.12(2) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
tz6.12-2  |-  ( -.  E! x  A F x  ->  ( F `  A )  =  (/) )
Distinct variable groups:    x, F    x, A

Proof of Theorem tz6.12-2
StepHypRef Expression
1 df-fv 5206 . 2  |-  ( F `
 A )  =  ( iota x A F x )
2 iotanul 5175 . 2  |-  ( -.  E! x  A F x  ->  ( iota x A F x )  =  (/) )
31, 2eqtrid 2215 1  |-  ( -.  E! x  A F x  ->  ( F `  A )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1348   E!weu 2019   (/)c0 3414   class class class wbr 3989   iotacio 5158   ` cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-in 3127  df-ss 3134  df-nul 3415  df-sn 3589  df-uni 3797  df-iota 5160  df-fv 5206
This theorem is referenced by:  fvprc  5490  ndmfvg  5527  nfunsn  5530
  Copyright terms: Public domain W3C validator