ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvifdc Unicode version

Theorem fvifdc 5508
Description: Move a conditional outside of a function. (Contributed by Jim Kingdon, 1-Jan-2022.)
Assertion
Ref Expression
fvifdc  |-  (DECID  ph  ->  ( F `  if (
ph ,  A ,  B ) )  =  if ( ph , 
( F `  A
) ,  ( F `
 B ) ) )

Proof of Theorem fvifdc
StepHypRef Expression
1 fveq2 5486 . 2  |-  ( if ( ph ,  A ,  B )  =  A  ->  ( F `  if ( ph ,  A ,  B ) )  =  ( F `  A
) )
2 fveq2 5486 . 2  |-  ( if ( ph ,  A ,  B )  =  B  ->  ( F `  if ( ph ,  A ,  B ) )  =  ( F `  B
) )
31, 2ifsbdc 3532 1  |-  (DECID  ph  ->  ( F `  if (
ph ,  A ,  B ) )  =  if ( ph , 
( F `  A
) ,  ( F `
 B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4  DECID wdc 824    = wceq 1343   ifcif 3520   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-if 3521  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator