ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvifdc Unicode version

Theorem fvifdc 5537
Description: Move a conditional outside of a function. (Contributed by Jim Kingdon, 1-Jan-2022.)
Assertion
Ref Expression
fvifdc  |-  (DECID  ph  ->  ( F `  if (
ph ,  A ,  B ) )  =  if ( ph , 
( F `  A
) ,  ( F `
 B ) ) )

Proof of Theorem fvifdc
StepHypRef Expression
1 fveq2 5515 . 2  |-  ( if ( ph ,  A ,  B )  =  A  ->  ( F `  if ( ph ,  A ,  B ) )  =  ( F `  A
) )
2 fveq2 5515 . 2  |-  ( if ( ph ,  A ,  B )  =  B  ->  ( F `  if ( ph ,  A ,  B ) )  =  ( F `  B
) )
31, 2ifsbdc 3546 1  |-  (DECID  ph  ->  ( F `  if (
ph ,  A ,  B ) )  =  if ( ph , 
( F `  A
) ,  ( F `
 B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4  DECID wdc 834    = wceq 1353   ifcif 3534   ` cfv 5216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2739  df-un 3133  df-if 3535  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-iota 5178  df-fv 5224
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator