ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvifdc Unicode version

Theorem fvifdc 5598
Description: Move a conditional outside of a function. (Contributed by Jim Kingdon, 1-Jan-2022.)
Assertion
Ref Expression
fvifdc  |-  (DECID  ph  ->  ( F `  if (
ph ,  A ,  B ) )  =  if ( ph , 
( F `  A
) ,  ( F `
 B ) ) )

Proof of Theorem fvifdc
StepHypRef Expression
1 fveq2 5576 . 2  |-  ( if ( ph ,  A ,  B )  =  A  ->  ( F `  if ( ph ,  A ,  B ) )  =  ( F `  A
) )
2 fveq2 5576 . 2  |-  ( if ( ph ,  A ,  B )  =  B  ->  ( F `  if ( ph ,  A ,  B ) )  =  ( F `  B
) )
31, 2ifsbdc 3583 1  |-  (DECID  ph  ->  ( F `  if (
ph ,  A ,  B ) )  =  if ( ph , 
( F `  A
) ,  ( F `
 B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4  DECID wdc 836    = wceq 1373   ifcif 3571   ` cfv 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-un 3170  df-if 3572  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-iota 5232  df-fv 5279
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator