ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvifdc GIF version

Theorem fvifdc 5483
Description: Move a conditional outside of a function. (Contributed by Jim Kingdon, 1-Jan-2022.)
Assertion
Ref Expression
fvifdc (DECID 𝜑 → (𝐹‘if(𝜑, 𝐴, 𝐵)) = if(𝜑, (𝐹𝐴), (𝐹𝐵)))

Proof of Theorem fvifdc
StepHypRef Expression
1 fveq2 5461 . 2 (if(𝜑, 𝐴, 𝐵) = 𝐴 → (𝐹‘if(𝜑, 𝐴, 𝐵)) = (𝐹𝐴))
2 fveq2 5461 . 2 (if(𝜑, 𝐴, 𝐵) = 𝐵 → (𝐹‘if(𝜑, 𝐴, 𝐵)) = (𝐹𝐵))
31, 2ifsbdc 3513 1 (DECID 𝜑 → (𝐹‘if(𝜑, 𝐴, 𝐵)) = if(𝜑, (𝐹𝐴), (𝐹𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  DECID wdc 820   = wceq 1332  ifcif 3501  cfv 5163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-rex 2438  df-v 2711  df-un 3102  df-if 3502  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-br 3962  df-iota 5128  df-fv 5171
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator