| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sefvex | Unicode version | ||
| Description: If a function is set-like, then the function value exists if the input does. (Contributed by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| sefvex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 |
. . . . . . . 8
| |
| 2 | 1 | a1i 9 |
. . . . . . 7
|
| 3 | simp3 1023 |
. . . . . . . 8
| |
| 4 | simp2 1022 |
. . . . . . . . 9
| |
| 5 | brcnvg 4902 |
. . . . . . . . 9
| |
| 6 | 1, 4, 5 | sylancr 414 |
. . . . . . . 8
|
| 7 | 3, 6 | mpbird 167 |
. . . . . . 7
|
| 8 | breq1 4085 |
. . . . . . . 8
| |
| 9 | 8 | elrab 2959 |
. . . . . . 7
|
| 10 | 2, 7, 9 | sylanbrc 417 |
. . . . . 6
|
| 11 | elssuni 3915 |
. . . . . 6
| |
| 12 | 10, 11 | syl 14 |
. . . . 5
|
| 13 | 12 | 3expia 1229 |
. . . 4
|
| 14 | 13 | alrimiv 1920 |
. . 3
|
| 15 | fvss 5640 |
. . 3
| |
| 16 | 14, 15 | syl 14 |
. 2
|
| 17 | seex 4425 |
. . 3
| |
| 18 | uniexg 4529 |
. . 3
| |
| 19 | 17, 18 | syl 14 |
. 2
|
| 20 | ssexg 4222 |
. 2
| |
| 21 | 16, 19, 20 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-se 4423 df-cnv 4726 df-iota 5277 df-fv 5325 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |