Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sefvex | Unicode version |
Description: If a function is set-like, then the function value exists if the input does. (Contributed by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
sefvex | Se |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2733 | . . . . . . . 8 | |
2 | 1 | a1i 9 | . . . . . . 7 Se |
3 | simp3 994 | . . . . . . . 8 Se | |
4 | simp2 993 | . . . . . . . . 9 Se | |
5 | brcnvg 4792 | . . . . . . . . 9 | |
6 | 1, 4, 5 | sylancr 412 | . . . . . . . 8 Se |
7 | 3, 6 | mpbird 166 | . . . . . . 7 Se |
8 | breq1 3992 | . . . . . . . 8 | |
9 | 8 | elrab 2886 | . . . . . . 7 |
10 | 2, 7, 9 | sylanbrc 415 | . . . . . 6 Se |
11 | elssuni 3824 | . . . . . 6 | |
12 | 10, 11 | syl 14 | . . . . 5 Se |
13 | 12 | 3expia 1200 | . . . 4 Se |
14 | 13 | alrimiv 1867 | . . 3 Se |
15 | fvss 5510 | . . 3 | |
16 | 14, 15 | syl 14 | . 2 Se |
17 | seex 4320 | . . 3 Se | |
18 | uniexg 4424 | . . 3 | |
19 | 17, 18 | syl 14 | . 2 Se |
20 | ssexg 4128 | . 2 | |
21 | 16, 19, 20 | syl2anc 409 | 1 Se |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wal 1346 wcel 2141 crab 2452 cvv 2730 wss 3121 cuni 3796 class class class wbr 3989 Se wse 4314 ccnv 4610 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-se 4318 df-cnv 4619 df-iota 5160 df-fv 5206 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |