Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sefvex | Unicode version |
Description: If a function is set-like, then the function value exists if the input does. (Contributed by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
sefvex | Se |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2738 | . . . . . . . 8 | |
2 | 1 | a1i 9 | . . . . . . 7 Se |
3 | simp3 999 | . . . . . . . 8 Se | |
4 | simp2 998 | . . . . . . . . 9 Se | |
5 | brcnvg 4801 | . . . . . . . . 9 | |
6 | 1, 4, 5 | sylancr 414 | . . . . . . . 8 Se |
7 | 3, 6 | mpbird 167 | . . . . . . 7 Se |
8 | breq1 4001 | . . . . . . . 8 | |
9 | 8 | elrab 2891 | . . . . . . 7 |
10 | 2, 7, 9 | sylanbrc 417 | . . . . . 6 Se |
11 | elssuni 3833 | . . . . . 6 | |
12 | 10, 11 | syl 14 | . . . . 5 Se |
13 | 12 | 3expia 1205 | . . . 4 Se |
14 | 13 | alrimiv 1872 | . . 3 Se |
15 | fvss 5521 | . . 3 | |
16 | 14, 15 | syl 14 | . 2 Se |
17 | seex 4329 | . . 3 Se | |
18 | uniexg 4433 | . . 3 | |
19 | 17, 18 | syl 14 | . 2 Se |
20 | ssexg 4137 | . 2 | |
21 | 16, 19, 20 | syl2anc 411 | 1 Se |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 w3a 978 wal 1351 wcel 2146 crab 2457 cvv 2735 wss 3127 cuni 3805 class class class wbr 3998 Se wse 4323 ccnv 4619 cfv 5208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-se 4327 df-cnv 4628 df-iota 5170 df-fv 5216 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |