| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sefvex | Unicode version | ||
| Description: If a function is set-like, then the function value exists if the input does. (Contributed by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| sefvex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2766 |
. . . . . . . 8
| |
| 2 | 1 | a1i 9 |
. . . . . . 7
|
| 3 | simp3 1001 |
. . . . . . . 8
| |
| 4 | simp2 1000 |
. . . . . . . . 9
| |
| 5 | brcnvg 4847 |
. . . . . . . . 9
| |
| 6 | 1, 4, 5 | sylancr 414 |
. . . . . . . 8
|
| 7 | 3, 6 | mpbird 167 |
. . . . . . 7
|
| 8 | breq1 4036 |
. . . . . . . 8
| |
| 9 | 8 | elrab 2920 |
. . . . . . 7
|
| 10 | 2, 7, 9 | sylanbrc 417 |
. . . . . 6
|
| 11 | elssuni 3867 |
. . . . . 6
| |
| 12 | 10, 11 | syl 14 |
. . . . 5
|
| 13 | 12 | 3expia 1207 |
. . . 4
|
| 14 | 13 | alrimiv 1888 |
. . 3
|
| 15 | fvss 5572 |
. . 3
| |
| 16 | 14, 15 | syl 14 |
. 2
|
| 17 | seex 4370 |
. . 3
| |
| 18 | uniexg 4474 |
. . 3
| |
| 19 | 17, 18 | syl 14 |
. 2
|
| 20 | ssexg 4172 |
. 2
| |
| 21 | 16, 19, 20 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-se 4368 df-cnv 4671 df-iota 5219 df-fv 5266 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |