Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sefvex | Unicode version |
Description: If a function is set-like, then the function value exists if the input does. (Contributed by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
sefvex | Se |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2729 | . . . . . . . 8 | |
2 | 1 | a1i 9 | . . . . . . 7 Se |
3 | simp3 989 | . . . . . . . 8 Se | |
4 | simp2 988 | . . . . . . . . 9 Se | |
5 | brcnvg 4785 | . . . . . . . . 9 | |
6 | 1, 4, 5 | sylancr 411 | . . . . . . . 8 Se |
7 | 3, 6 | mpbird 166 | . . . . . . 7 Se |
8 | breq1 3985 | . . . . . . . 8 | |
9 | 8 | elrab 2882 | . . . . . . 7 |
10 | 2, 7, 9 | sylanbrc 414 | . . . . . 6 Se |
11 | elssuni 3817 | . . . . . 6 | |
12 | 10, 11 | syl 14 | . . . . 5 Se |
13 | 12 | 3expia 1195 | . . . 4 Se |
14 | 13 | alrimiv 1862 | . . 3 Se |
15 | fvss 5500 | . . 3 | |
16 | 14, 15 | syl 14 | . 2 Se |
17 | seex 4313 | . . 3 Se | |
18 | uniexg 4417 | . . 3 | |
19 | 17, 18 | syl 14 | . 2 Se |
20 | ssexg 4121 | . 2 | |
21 | 16, 19, 20 | syl2anc 409 | 1 Se |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wal 1341 wcel 2136 crab 2448 cvv 2726 wss 3116 cuni 3789 class class class wbr 3982 Se wse 4307 ccnv 4603 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-se 4311 df-cnv 4612 df-iota 5153 df-fv 5196 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |