| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sefvex | Unicode version | ||
| Description: If a function is set-like, then the function value exists if the input does. (Contributed by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| sefvex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2774 |
. . . . . . . 8
| |
| 2 | 1 | a1i 9 |
. . . . . . 7
|
| 3 | simp3 1001 |
. . . . . . . 8
| |
| 4 | simp2 1000 |
. . . . . . . . 9
| |
| 5 | brcnvg 4858 |
. . . . . . . . 9
| |
| 6 | 1, 4, 5 | sylancr 414 |
. . . . . . . 8
|
| 7 | 3, 6 | mpbird 167 |
. . . . . . 7
|
| 8 | breq1 4046 |
. . . . . . . 8
| |
| 9 | 8 | elrab 2928 |
. . . . . . 7
|
| 10 | 2, 7, 9 | sylanbrc 417 |
. . . . . 6
|
| 11 | elssuni 3877 |
. . . . . 6
| |
| 12 | 10, 11 | syl 14 |
. . . . 5
|
| 13 | 12 | 3expia 1207 |
. . . 4
|
| 14 | 13 | alrimiv 1896 |
. . 3
|
| 15 | fvss 5589 |
. . 3
| |
| 16 | 14, 15 | syl 14 |
. 2
|
| 17 | seex 4381 |
. . 3
| |
| 18 | uniexg 4485 |
. . 3
| |
| 19 | 17, 18 | syl 14 |
. 2
|
| 20 | ssexg 4182 |
. 2
| |
| 21 | 16, 19, 20 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-se 4379 df-cnv 4682 df-iota 5231 df-fv 5278 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |