ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sefvex Unicode version

Theorem sefvex 5310
Description: If a function is set-like, then the function value exists if the input does. (Contributed by Mario Carneiro, 24-May-2019.)
Assertion
Ref Expression
sefvex  |-  ( ( `' F Se  _V  /\  A  e.  _V )  ->  ( F `  A )  e.  _V )

Proof of Theorem sefvex
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2622 . . . . . . . 8  |-  x  e. 
_V
21a1i 9 . . . . . . 7  |-  ( ( `' F Se  _V  /\  A  e.  _V  /\  A F x )  ->  x  e.  _V )
3 simp3 945 . . . . . . . 8  |-  ( ( `' F Se  _V  /\  A  e.  _V  /\  A F x )  ->  A F x )
4 simp2 944 . . . . . . . . 9  |-  ( ( `' F Se  _V  /\  A  e.  _V  /\  A F x )  ->  A  e.  _V )
5 brcnvg 4605 . . . . . . . . 9  |-  ( ( x  e.  _V  /\  A  e.  _V )  ->  ( x `' F A 
<->  A F x ) )
61, 4, 5sylancr 405 . . . . . . . 8  |-  ( ( `' F Se  _V  /\  A  e.  _V  /\  A F x )  ->  (
x `' F A  <-> 
A F x ) )
73, 6mpbird 165 . . . . . . 7  |-  ( ( `' F Se  _V  /\  A  e.  _V  /\  A F x )  ->  x `' F A )
8 breq1 3840 . . . . . . . 8  |-  ( y  =  x  ->  (
y `' F A  <-> 
x `' F A ) )
98elrab 2769 . . . . . . 7  |-  ( x  e.  { y  e. 
_V  |  y `' F A }  <->  ( x  e.  _V  /\  x `' F A ) )
102, 7, 9sylanbrc 408 . . . . . 6  |-  ( ( `' F Se  _V  /\  A  e.  _V  /\  A F x )  ->  x  e.  { y  e.  _V  |  y `' F A } )
11 elssuni 3676 . . . . . 6  |-  ( x  e.  { y  e. 
_V  |  y `' F A }  ->  x 
C_  U. { y  e. 
_V  |  y `' F A } )
1210, 11syl 14 . . . . 5  |-  ( ( `' F Se  _V  /\  A  e.  _V  /\  A F x )  ->  x  C_ 
U. { y  e. 
_V  |  y `' F A } )
13123expia 1145 . . . 4  |-  ( ( `' F Se  _V  /\  A  e.  _V )  ->  ( A F x  ->  x  C_ 
U. { y  e. 
_V  |  y `' F A } ) )
1413alrimiv 1802 . . 3  |-  ( ( `' F Se  _V  /\  A  e.  _V )  ->  A. x
( A F x  ->  x  C_  U. {
y  e.  _V  | 
y `' F A } ) )
15 fvss 5303 . . 3  |-  ( A. x ( A F x  ->  x  C_  U. {
y  e.  _V  | 
y `' F A } )  ->  ( F `  A )  C_ 
U. { y  e. 
_V  |  y `' F A } )
1614, 15syl 14 . 2  |-  ( ( `' F Se  _V  /\  A  e.  _V )  ->  ( F `  A )  C_ 
U. { y  e. 
_V  |  y `' F A } )
17 seex 4153 . . 3  |-  ( ( `' F Se  _V  /\  A  e.  _V )  ->  { y  e.  _V  |  y `' F A }  e.  _V )
18 uniexg 4256 . . 3  |-  ( { y  e.  _V  | 
y `' F A }  e.  _V  ->  U. { y  e.  _V  |  y `' F A }  e.  _V )
1917, 18syl 14 . 2  |-  ( ( `' F Se  _V  /\  A  e.  _V )  ->  U. {
y  e.  _V  | 
y `' F A }  e.  _V )
20 ssexg 3970 . 2  |-  ( ( ( F `  A
)  C_  U. { y  e.  _V  |  y `' F A }  /\  U. { y  e.  _V  |  y `' F A }  e.  _V )  ->  ( F `  A )  e.  _V )
2116, 19, 20syl2anc 403 1  |-  ( ( `' F Se  _V  /\  A  e.  _V )  ->  ( F `  A )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 924   A.wal 1287    e. wcel 1438   {crab 2363   _Vcvv 2619    C_ wss 2997   U.cuni 3648   class class class wbr 3837   Se wse 4147   `'ccnv 4427   ` cfv 5002
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-br 3838  df-opab 3892  df-se 4151  df-cnv 4436  df-iota 4967  df-fv 5010
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator