ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sefvex Unicode version

Theorem sefvex 5528
Description: If a function is set-like, then the function value exists if the input does. (Contributed by Mario Carneiro, 24-May-2019.)
Assertion
Ref Expression
sefvex  |-  ( ( `' F Se  _V  /\  A  e.  _V )  ->  ( F `  A )  e.  _V )

Proof of Theorem sefvex
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2738 . . . . . . . 8  |-  x  e. 
_V
21a1i 9 . . . . . . 7  |-  ( ( `' F Se  _V  /\  A  e.  _V  /\  A F x )  ->  x  e.  _V )
3 simp3 999 . . . . . . . 8  |-  ( ( `' F Se  _V  /\  A  e.  _V  /\  A F x )  ->  A F x )
4 simp2 998 . . . . . . . . 9  |-  ( ( `' F Se  _V  /\  A  e.  _V  /\  A F x )  ->  A  e.  _V )
5 brcnvg 4801 . . . . . . . . 9  |-  ( ( x  e.  _V  /\  A  e.  _V )  ->  ( x `' F A 
<->  A F x ) )
61, 4, 5sylancr 414 . . . . . . . 8  |-  ( ( `' F Se  _V  /\  A  e.  _V  /\  A F x )  ->  (
x `' F A  <-> 
A F x ) )
73, 6mpbird 167 . . . . . . 7  |-  ( ( `' F Se  _V  /\  A  e.  _V  /\  A F x )  ->  x `' F A )
8 breq1 4001 . . . . . . . 8  |-  ( y  =  x  ->  (
y `' F A  <-> 
x `' F A ) )
98elrab 2891 . . . . . . 7  |-  ( x  e.  { y  e. 
_V  |  y `' F A }  <->  ( x  e.  _V  /\  x `' F A ) )
102, 7, 9sylanbrc 417 . . . . . 6  |-  ( ( `' F Se  _V  /\  A  e.  _V  /\  A F x )  ->  x  e.  { y  e.  _V  |  y `' F A } )
11 elssuni 3833 . . . . . 6  |-  ( x  e.  { y  e. 
_V  |  y `' F A }  ->  x 
C_  U. { y  e. 
_V  |  y `' F A } )
1210, 11syl 14 . . . . 5  |-  ( ( `' F Se  _V  /\  A  e.  _V  /\  A F x )  ->  x  C_ 
U. { y  e. 
_V  |  y `' F A } )
13123expia 1205 . . . 4  |-  ( ( `' F Se  _V  /\  A  e.  _V )  ->  ( A F x  ->  x  C_ 
U. { y  e. 
_V  |  y `' F A } ) )
1413alrimiv 1872 . . 3  |-  ( ( `' F Se  _V  /\  A  e.  _V )  ->  A. x
( A F x  ->  x  C_  U. {
y  e.  _V  | 
y `' F A } ) )
15 fvss 5521 . . 3  |-  ( A. x ( A F x  ->  x  C_  U. {
y  e.  _V  | 
y `' F A } )  ->  ( F `  A )  C_ 
U. { y  e. 
_V  |  y `' F A } )
1614, 15syl 14 . 2  |-  ( ( `' F Se  _V  /\  A  e.  _V )  ->  ( F `  A )  C_ 
U. { y  e. 
_V  |  y `' F A } )
17 seex 4329 . . 3  |-  ( ( `' F Se  _V  /\  A  e.  _V )  ->  { y  e.  _V  |  y `' F A }  e.  _V )
18 uniexg 4433 . . 3  |-  ( { y  e.  _V  | 
y `' F A }  e.  _V  ->  U. { y  e.  _V  |  y `' F A }  e.  _V )
1917, 18syl 14 . 2  |-  ( ( `' F Se  _V  /\  A  e.  _V )  ->  U. {
y  e.  _V  | 
y `' F A }  e.  _V )
20 ssexg 4137 . 2  |-  ( ( ( F `  A
)  C_  U. { y  e.  _V  |  y `' F A }  /\  U. { y  e.  _V  |  y `' F A }  e.  _V )  ->  ( F `  A )  e.  _V )
2116, 19, 20syl2anc 411 1  |-  ( ( `' F Se  _V  /\  A  e.  _V )  ->  ( F `  A )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978   A.wal 1351    e. wcel 2146   {crab 2457   _Vcvv 2735    C_ wss 3127   U.cuni 3805   class class class wbr 3998   Se wse 4323   `'ccnv 4619   ` cfv 5208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-se 4327  df-cnv 4628  df-iota 5170  df-fv 5216
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator