| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sefvex | Unicode version | ||
| Description: If a function is set-like, then the function value exists if the input does. (Contributed by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| sefvex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2776 |
. . . . . . . 8
| |
| 2 | 1 | a1i 9 |
. . . . . . 7
|
| 3 | simp3 1002 |
. . . . . . . 8
| |
| 4 | simp2 1001 |
. . . . . . . . 9
| |
| 5 | brcnvg 4872 |
. . . . . . . . 9
| |
| 6 | 1, 4, 5 | sylancr 414 |
. . . . . . . 8
|
| 7 | 3, 6 | mpbird 167 |
. . . . . . 7
|
| 8 | breq1 4057 |
. . . . . . . 8
| |
| 9 | 8 | elrab 2933 |
. . . . . . 7
|
| 10 | 2, 7, 9 | sylanbrc 417 |
. . . . . 6
|
| 11 | elssuni 3887 |
. . . . . 6
| |
| 12 | 10, 11 | syl 14 |
. . . . 5
|
| 13 | 12 | 3expia 1208 |
. . . 4
|
| 14 | 13 | alrimiv 1898 |
. . 3
|
| 15 | fvss 5608 |
. . 3
| |
| 16 | 14, 15 | syl 14 |
. 2
|
| 17 | seex 4395 |
. . 3
| |
| 18 | uniexg 4499 |
. . 3
| |
| 19 | 17, 18 | syl 14 |
. 2
|
| 20 | ssexg 4194 |
. 2
| |
| 21 | 16, 19, 20 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-se 4393 df-cnv 4696 df-iota 5246 df-fv 5293 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |