Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ifelpwund | Unicode version |
Description: Existence of a conditional class, quantitative version (deduction form). (Contributed by BJ, 15-Aug-2024.) |
Ref | Expression |
---|---|
ifelpwund.1 | |
ifelpwund.2 |
Ref | Expression |
---|---|
ifelpwund |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifelpwund.1 | . 2 | |
2 | ifelpwund.2 | . 2 | |
3 | ifelpwung 4456 | . 2 | |
4 | 1, 2, 3 | syl2anc 409 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2135 cun 3112 cif 3518 cpw 3556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-sep 4097 ax-pr 4184 ax-un 4408 |
This theorem depends on definitions: df-bi 116 df-tru 1345 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-rex 2448 df-rab 2451 df-v 2726 df-un 3118 df-in 3120 df-ss 3127 df-if 3519 df-pw 3558 df-sn 3579 df-pr 3580 df-uni 3787 |
This theorem is referenced by: ifexd 4459 |
Copyright terms: Public domain | W3C validator |