ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifelpwund Unicode version

Theorem ifelpwund 4528
Description: Existence of a conditional class, quantitative version (deduction form). (Contributed by BJ, 15-Aug-2024.)
Hypotheses
Ref Expression
ifelpwund.1  |-  ( ph  ->  A  e.  V )
ifelpwund.2  |-  ( ph  ->  B  e.  W )
Assertion
Ref Expression
ifelpwund  |-  ( ph  ->  if ( ps ,  A ,  B )  e.  ~P ( A  u.  B ) )

Proof of Theorem ifelpwund
StepHypRef Expression
1 ifelpwund.1 . 2  |-  ( ph  ->  A  e.  V )
2 ifelpwund.2 . 2  |-  ( ph  ->  B  e.  W )
3 ifelpwung 4527 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  if ( ps ,  A ,  B )  e.  ~P ( A  u.  B ) )
41, 2, 3syl2anc 411 1  |-  ( ph  ->  if ( ps ,  A ,  B )  e.  ~P ( A  u.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2175    u. cun 3163   ifcif 3570   ~Pcpw 3615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-rab 2492  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-uni 3850
This theorem is referenced by:  ifexd  4530
  Copyright terms: Public domain W3C validator