ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifelpwun Unicode version

Theorem ifelpwun 4518
Description: Existence of a conditional class, quantitative version (inference form). (Contributed by BJ, 15-Aug-2024.)
Hypotheses
Ref Expression
ifelpwun.1  |-  A  e. 
_V
ifelpwun.2  |-  B  e. 
_V
Assertion
Ref Expression
ifelpwun  |-  if (
ph ,  A ,  B )  e.  ~P ( A  u.  B
)

Proof of Theorem ifelpwun
StepHypRef Expression
1 ifelpwun.1 . 2  |-  A  e. 
_V
2 ifelpwun.2 . 2  |-  B  e. 
_V
3 ifelpwung 4516 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  if ( ph ,  A ,  B )  e.  ~P ( A  u.  B ) )
41, 2, 3mp2an 426 1  |-  if (
ph ,  A ,  B )  e.  ~P ( A  u.  B
)
Colors of variables: wff set class
Syntax hints:    e. wcel 2167   _Vcvv 2763    u. cun 3155   ifcif 3561   ~Pcpw 3605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-rab 2484  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840
This theorem is referenced by:  fmelpw1o  15419  bj-charfun  15420
  Copyright terms: Public domain W3C validator