ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifelpwun Unicode version

Theorem ifelpwun 4538
Description: Existence of a conditional class, quantitative version (inference form). (Contributed by BJ, 15-Aug-2024.)
Hypotheses
Ref Expression
ifelpwun.1  |-  A  e. 
_V
ifelpwun.2  |-  B  e. 
_V
Assertion
Ref Expression
ifelpwun  |-  if (
ph ,  A ,  B )  e.  ~P ( A  u.  B
)

Proof of Theorem ifelpwun
StepHypRef Expression
1 ifelpwun.1 . 2  |-  A  e. 
_V
2 ifelpwun.2 . 2  |-  B  e. 
_V
3 ifelpwung 4536 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  if ( ph ,  A ,  B )  e.  ~P ( A  u.  B ) )
41, 2, 3mp2an 426 1  |-  if (
ph ,  A ,  B )  e.  ~P ( A  u.  B
)
Colors of variables: wff set class
Syntax hints:    e. wcel 2177   _Vcvv 2773    u. cun 3168   ifcif 3575   ~Pcpw 3621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-rab 2494  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-uni 3857
This theorem is referenced by:  fmelpw1o  7378  bj-charfun  15881
  Copyright terms: Public domain W3C validator