ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifelpwun Unicode version

Theorem ifelpwun 4458
Description: Existence of a conditional class, quantitative version (inference form). (Contributed by BJ, 15-Aug-2024.)
Hypotheses
Ref Expression
ifelpwun.1  |-  A  e. 
_V
ifelpwun.2  |-  B  e. 
_V
Assertion
Ref Expression
ifelpwun  |-  if (
ph ,  A ,  B )  e.  ~P ( A  u.  B
)

Proof of Theorem ifelpwun
StepHypRef Expression
1 ifelpwun.1 . 2  |-  A  e. 
_V
2 ifelpwun.2 . 2  |-  B  e. 
_V
3 ifelpwung 4456 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  if ( ph ,  A ,  B )  e.  ~P ( A  u.  B ) )
41, 2, 3mp2an 423 1  |-  if (
ph ,  A ,  B )  e.  ~P ( A  u.  B
)
Colors of variables: wff set class
Syntax hints:    e. wcel 2135   _Vcvv 2724    u. cun 3112   ifcif 3518   ~Pcpw 3556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4097  ax-pr 4184  ax-un 4408
This theorem depends on definitions:  df-bi 116  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-rex 2448  df-rab 2451  df-v 2726  df-un 3118  df-in 3120  df-ss 3127  df-if 3519  df-pw 3558  df-sn 3579  df-pr 3580  df-uni 3787
This theorem is referenced by:  fmelpw1o  13581  bj-charfun  13582
  Copyright terms: Public domain W3C validator