Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ifelpwund | GIF version |
Description: Existence of a conditional class, quantitative version (deduction form). (Contributed by BJ, 15-Aug-2024.) |
Ref | Expression |
---|---|
ifelpwund.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ifelpwund.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
ifelpwund | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝒫 (𝐴 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifelpwund.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | ifelpwund.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | ifelpwung 4459 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → if(𝜓, 𝐴, 𝐵) ∈ 𝒫 (𝐴 ∪ 𝐵)) | |
4 | 1, 2, 3 | syl2anc 409 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝒫 (𝐴 ∪ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ∪ cun 3114 ifcif 3520 𝒫 cpw 3559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-rab 2453 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 |
This theorem is referenced by: ifexd 4462 |
Copyright terms: Public domain | W3C validator |