| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifelpwund | GIF version | ||
| Description: Existence of a conditional class, quantitative version (deduction form). (Contributed by BJ, 15-Aug-2024.) |
| Ref | Expression |
|---|---|
| ifelpwund.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ifelpwund.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| ifelpwund | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝒫 (𝐴 ∪ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifelpwund.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | ifelpwund.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | ifelpwung 4532 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → if(𝜓, 𝐴, 𝐵) ∈ 𝒫 (𝐴 ∪ 𝐵)) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝒫 (𝐴 ∪ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ∪ cun 3165 ifcif 3572 𝒫 cpw 3617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pr 4257 ax-un 4484 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-rab 2494 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-uni 3853 |
| This theorem is referenced by: ifexd 4535 |
| Copyright terms: Public domain | W3C validator |