ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifelpwund GIF version

Theorem ifelpwund 4533
Description: Existence of a conditional class, quantitative version (deduction form). (Contributed by BJ, 15-Aug-2024.)
Hypotheses
Ref Expression
ifelpwund.1 (𝜑𝐴𝑉)
ifelpwund.2 (𝜑𝐵𝑊)
Assertion
Ref Expression
ifelpwund (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝒫 (𝐴𝐵))

Proof of Theorem ifelpwund
StepHypRef Expression
1 ifelpwund.1 . 2 (𝜑𝐴𝑉)
2 ifelpwund.2 . 2 (𝜑𝐵𝑊)
3 ifelpwung 4532 . 2 ((𝐴𝑉𝐵𝑊) → if(𝜓, 𝐴, 𝐵) ∈ 𝒫 (𝐴𝐵))
41, 2, 3syl2anc 411 1 (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝒫 (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177  cun 3165  ifcif 3572  𝒫 cpw 3617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pr 4257  ax-un 4484
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-rab 2494  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-uni 3853
This theorem is referenced by:  ifexd  4535
  Copyright terms: Public domain W3C validator