ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifelpwung Unicode version

Theorem ifelpwung 4516
Description: Existence of a conditional class, quantitative version (closed form). (Contributed by BJ, 15-Aug-2024.)
Assertion
Ref Expression
ifelpwung  |-  ( ( A  e.  V  /\  B  e.  W )  ->  if ( ph ,  A ,  B )  e.  ~P ( A  u.  B ) )

Proof of Theorem ifelpwung
StepHypRef Expression
1 ifssun 3575 . 2  |-  if (
ph ,  A ,  B )  C_  ( A  u.  B )
2 unexg 4478 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  u.  B
)  e.  _V )
3 elpw2g 4189 . . 3  |-  ( ( A  u.  B )  e.  _V  ->  ( if ( ph ,  A ,  B )  e.  ~P ( A  u.  B
)  <->  if ( ph ,  A ,  B )  C_  ( A  u.  B
) ) )
42, 3syl 14 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( if ( ph ,  A ,  B )  e.  ~P ( A  u.  B )  <->  if ( ph ,  A ,  B )  C_  ( A  u.  B )
) )
51, 4mpbiri 168 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  if ( ph ,  A ,  B )  e.  ~P ( A  u.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2167   _Vcvv 2763    u. cun 3155    C_ wss 3157   ifcif 3561   ~Pcpw 3605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-rab 2484  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840
This theorem is referenced by:  ifelpwund  4517  ifelpwun  4518
  Copyright terms: Public domain W3C validator