ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifelpwung Unicode version

Theorem ifelpwung 4527
Description: Existence of a conditional class, quantitative version (closed form). (Contributed by BJ, 15-Aug-2024.)
Assertion
Ref Expression
ifelpwung  |-  ( ( A  e.  V  /\  B  e.  W )  ->  if ( ph ,  A ,  B )  e.  ~P ( A  u.  B ) )

Proof of Theorem ifelpwung
StepHypRef Expression
1 ifssun 3584 . 2  |-  if (
ph ,  A ,  B )  C_  ( A  u.  B )
2 unexg 4489 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  u.  B
)  e.  _V )
3 elpw2g 4199 . . 3  |-  ( ( A  u.  B )  e.  _V  ->  ( if ( ph ,  A ,  B )  e.  ~P ( A  u.  B
)  <->  if ( ph ,  A ,  B )  C_  ( A  u.  B
) ) )
42, 3syl 14 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( if ( ph ,  A ,  B )  e.  ~P ( A  u.  B )  <->  if ( ph ,  A ,  B )  C_  ( A  u.  B )
) )
51, 4mpbiri 168 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  if ( ph ,  A ,  B )  e.  ~P ( A  u.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2175   _Vcvv 2771    u. cun 3163    C_ wss 3165   ifcif 3570   ~Pcpw 3615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-rab 2492  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-uni 3850
This theorem is referenced by:  ifelpwund  4528  ifelpwun  4529
  Copyright terms: Public domain W3C validator