ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifelpwung Unicode version

Theorem ifelpwung 4495
Description: Existence of a conditional class, quantitative version (closed form). (Contributed by BJ, 15-Aug-2024.)
Assertion
Ref Expression
ifelpwung  |-  ( ( A  e.  V  /\  B  e.  W )  ->  if ( ph ,  A ,  B )  e.  ~P ( A  u.  B ) )

Proof of Theorem ifelpwung
StepHypRef Expression
1 ifssun 3562 . 2  |-  if (
ph ,  A ,  B )  C_  ( A  u.  B )
2 unexg 4457 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  u.  B
)  e.  _V )
3 elpw2g 4170 . . 3  |-  ( ( A  u.  B )  e.  _V  ->  ( if ( ph ,  A ,  B )  e.  ~P ( A  u.  B
)  <->  if ( ph ,  A ,  B )  C_  ( A  u.  B
) ) )
42, 3syl 14 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( if ( ph ,  A ,  B )  e.  ~P ( A  u.  B )  <->  if ( ph ,  A ,  B )  C_  ( A  u.  B )
) )
51, 4mpbiri 168 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  if ( ph ,  A ,  B )  e.  ~P ( A  u.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2159   _Vcvv 2751    u. cun 3141    C_ wss 3143   ifcif 3548   ~Pcpw 3589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-sep 4135  ax-pr 4223  ax-un 4447
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-rex 2473  df-rab 2476  df-v 2753  df-un 3147  df-in 3149  df-ss 3156  df-if 3549  df-pw 3591  df-sn 3612  df-pr 3613  df-uni 3824
This theorem is referenced by:  ifelpwund  4496  ifelpwun  4497
  Copyright terms: Public domain W3C validator