ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifelpwung Unicode version

Theorem ifelpwung 4483
Description: Existence of a conditional class, quantitative version (closed form). (Contributed by BJ, 15-Aug-2024.)
Assertion
Ref Expression
ifelpwung  |-  ( ( A  e.  V  /\  B  e.  W )  ->  if ( ph ,  A ,  B )  e.  ~P ( A  u.  B ) )

Proof of Theorem ifelpwung
StepHypRef Expression
1 ifssun 3550 . 2  |-  if (
ph ,  A ,  B )  C_  ( A  u.  B )
2 unexg 4445 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  u.  B
)  e.  _V )
3 elpw2g 4158 . . 3  |-  ( ( A  u.  B )  e.  _V  ->  ( if ( ph ,  A ,  B )  e.  ~P ( A  u.  B
)  <->  if ( ph ,  A ,  B )  C_  ( A  u.  B
) ) )
42, 3syl 14 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( if ( ph ,  A ,  B )  e.  ~P ( A  u.  B )  <->  if ( ph ,  A ,  B )  C_  ( A  u.  B )
) )
51, 4mpbiri 168 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  if ( ph ,  A ,  B )  e.  ~P ( A  u.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2148   _Vcvv 2739    u. cun 3129    C_ wss 3131   ifcif 3536   ~Pcpw 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-rab 2464  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-uni 3812
This theorem is referenced by:  ifelpwund  4484  ifelpwun  4485
  Copyright terms: Public domain W3C validator