Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  peano3nninf Unicode version

Theorem peano3nninf 13527
Description: The successor function on ℕ is never zero. Half of Lemma 3.4 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 1-Aug-2022.)
Hypothesis
Ref Expression
peano3nninf.s  |-  S  =  ( p  e. 
|->  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) ) ) )
Assertion
Ref Expression
peano3nninf  |-  ( A  e.  ->  ( S `  A
)  =/=  ( x  e.  om  |->  (/) ) )
Distinct variable groups:    A, i, p    S, i, x    x, p
Allowed substitution hints:    A( x)    S( p)

Proof of Theorem peano3nninf
StepHypRef Expression
1 fveq1 5460 . . . . . . . . . 10  |-  ( p  =  A  ->  (
p `  U. i )  =  ( A `  U. i ) )
21ifeq2d 3519 . . . . . . . . 9  |-  ( p  =  A  ->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) )  =  if ( i  =  (/) ,  1o ,  ( A `  U. i ) ) )
32mpteq2dv 4051 . . . . . . . 8  |-  ( p  =  A  ->  (
i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) ) )  =  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( A `
 U. i ) ) ) )
4 peano3nninf.s . . . . . . . 8  |-  S  =  ( p  e. 
|->  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) ) ) )
5 omex 4546 . . . . . . . . 9  |-  om  e.  _V
65mptex 5686 . . . . . . . 8  |-  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( A `  U. i ) ) )  e.  _V
73, 4, 6fvmpt 5538 . . . . . . 7  |-  ( A  e.  ->  ( S `  A
)  =  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( A `  U. i ) ) ) )
8 eqeq1 2161 . . . . . . . . 9  |-  ( i  =  (/)  ->  ( i  =  (/)  <->  (/)  =  (/) ) )
9 unieq 3777 . . . . . . . . . 10  |-  ( i  =  (/)  ->  U. i  =  U. (/) )
109fveq2d 5465 . . . . . . . . 9  |-  ( i  =  (/)  ->  ( A `
 U. i )  =  ( A `  U. (/) ) )
118, 10ifbieq2d 3525 . . . . . . . 8  |-  ( i  =  (/)  ->  if ( i  =  (/) ,  1o ,  ( A `  U. i ) )  =  if ( (/)  =  (/) ,  1o ,  ( A `
 U. (/) ) ) )
1211adantl 275 . . . . . . 7  |-  ( ( A  e.  /\  i  =  (/) )  ->  if ( i  =  (/) ,  1o , 
( A `  U. i ) )  =  if ( (/)  =  (/) ,  1o ,  ( A `
 U. (/) ) ) )
13 peano1 4547 . . . . . . . 8  |-  (/)  e.  om
1413a1i 9 . . . . . . 7  |-  ( A  e.  -> 
(/)  e.  om )
15 eqid 2154 . . . . . . . . . 10  |-  (/)  =  (/)
1615iftruei 3507 . . . . . . . . 9  |-  if (
(/)  =  (/) ,  1o ,  ( A `  U. (/) ) )  =  1o
17 1onn 6456 . . . . . . . . 9  |-  1o  e.  om
1816, 17eqeltri 2227 . . . . . . . 8  |-  if (
(/)  =  (/) ,  1o ,  ( A `  U. (/) ) )  e. 
om
1918a1i 9 . . . . . . 7  |-  ( A  e.  ->  if ( (/)  =  (/) ,  1o ,  ( A `
 U. (/) ) )  e.  om )
207, 12, 14, 19fvmptd 5542 . . . . . 6  |-  ( A  e.  ->  ( ( S `  A ) `  (/) )  =  if ( (/)  =  (/) ,  1o ,  ( A `
 U. (/) ) ) )
2120, 16eqtrdi 2203 . . . . 5  |-  ( A  e.  ->  ( ( S `  A ) `  (/) )  =  1o )
2221adantr 274 . . . 4  |-  ( ( A  e.  /\  ( S `  A )  =  ( x  e.  om  |->  (/) ) )  ->  (
( S `  A
) `  (/) )  =  1o )
23 fveq1 5460 . . . . . 6  |-  ( ( S `  A )  =  ( x  e. 
om  |->  (/) )  ->  (
( S `  A
) `  (/) )  =  ( ( x  e. 
om  |->  (/) ) `  (/) ) )
2423adantl 275 . . . . 5  |-  ( ( A  e.  /\  ( S `  A )  =  ( x  e.  om  |->  (/) ) )  ->  (
( S `  A
) `  (/) )  =  ( ( x  e. 
om  |->  (/) ) `  (/) ) )
2515a1i 9 . . . . . . 7  |-  ( x  =  (/)  ->  (/)  =  (/) )
26 eqid 2154 . . . . . . 7  |-  ( x  e.  om  |->  (/) )  =  ( x  e.  om  |->  (/) )
2725, 26fvmptg 5537 . . . . . 6  |-  ( (
(/)  e.  om  /\  (/)  e.  om )  ->  ( ( x  e.  om  |->  (/) ) `  (/) )  =  (/) )
2813, 13, 27mp2an 423 . . . . 5  |-  ( ( x  e.  om  |->  (/) ) `  (/) )  =  (/)
2924, 28eqtrdi 2203 . . . 4  |-  ( ( A  e.  /\  ( S `  A )  =  ( x  e.  om  |->  (/) ) )  ->  (
( S `  A
) `  (/) )  =  (/) )
3022, 29eqtr3d 2189 . . 3  |-  ( ( A  e.  /\  ( S `  A )  =  ( x  e.  om  |->  (/) ) )  ->  1o  =  (/) )
31 1n0 6369 . . . . 5  |-  1o  =/=  (/)
3231neii 2326 . . . 4  |-  -.  1o  =  (/)
3332a1i 9 . . 3  |-  ( ( A  e.  /\  ( S `  A )  =  ( x  e.  om  |->  (/) ) )  ->  -.  1o  =  (/) )
3430, 33pm2.65da 651 . 2  |-  ( A  e.  ->  -.  ( S `  A )  =  ( x  e.  om  |->  (/) ) )
3534neqned 2331 1  |-  ( A  e.  ->  ( S `  A
)  =/=  ( x  e.  om  |->  (/) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 2125    =/= wne 2324   (/)c0 3390   ifcif 3501   U.cuni 3768    |-> cmpt 4021   omcom 4543   ` cfv 5163   1oc1o 6346  ℕxnninf 7049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-iinf 4541
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-id 4248  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-1o 6353
This theorem is referenced by:  exmidsbthrlem  13542
  Copyright terms: Public domain W3C validator