Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > peano3nninf | Unicode version |
Description: The successor function on ℕ∞ is never zero. Half of Lemma 3.4 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 1-Aug-2022.) |
Ref | Expression |
---|---|
peano3nninf.s | ℕ∞ |
Ref | Expression |
---|---|
peano3nninf | ℕ∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 5495 | . . . . . . . . . 10 | |
2 | 1 | ifeq2d 3544 | . . . . . . . . 9 |
3 | 2 | mpteq2dv 4080 | . . . . . . . 8 |
4 | peano3nninf.s | . . . . . . . 8 ℕ∞ | |
5 | omex 4577 | . . . . . . . . 9 | |
6 | 5 | mptex 5722 | . . . . . . . 8 |
7 | 3, 4, 6 | fvmpt 5573 | . . . . . . 7 ℕ∞ |
8 | eqeq1 2177 | . . . . . . . . 9 | |
9 | unieq 3805 | . . . . . . . . . 10 | |
10 | 9 | fveq2d 5500 | . . . . . . . . 9 |
11 | 8, 10 | ifbieq2d 3550 | . . . . . . . 8 |
12 | 11 | adantl 275 | . . . . . . 7 ℕ∞ |
13 | peano1 4578 | . . . . . . . 8 | |
14 | 13 | a1i 9 | . . . . . . 7 ℕ∞ |
15 | eqid 2170 | . . . . . . . . . 10 | |
16 | 15 | iftruei 3532 | . . . . . . . . 9 |
17 | 1onn 6499 | . . . . . . . . 9 | |
18 | 16, 17 | eqeltri 2243 | . . . . . . . 8 |
19 | 18 | a1i 9 | . . . . . . 7 ℕ∞ |
20 | 7, 12, 14, 19 | fvmptd 5577 | . . . . . 6 ℕ∞ |
21 | 20, 16 | eqtrdi 2219 | . . . . 5 ℕ∞ |
22 | 21 | adantr 274 | . . . 4 ℕ∞ |
23 | fveq1 5495 | . . . . . 6 | |
24 | 23 | adantl 275 | . . . . 5 ℕ∞ |
25 | 15 | a1i 9 | . . . . . . 7 |
26 | eqid 2170 | . . . . . . 7 | |
27 | 25, 26 | fvmptg 5572 | . . . . . 6 |
28 | 13, 13, 27 | mp2an 424 | . . . . 5 |
29 | 24, 28 | eqtrdi 2219 | . . . 4 ℕ∞ |
30 | 22, 29 | eqtr3d 2205 | . . 3 ℕ∞ |
31 | 1n0 6411 | . . . . 5 | |
32 | 31 | neii 2342 | . . . 4 |
33 | 32 | a1i 9 | . . 3 ℕ∞ |
34 | 30, 33 | pm2.65da 656 | . 2 ℕ∞ |
35 | 34 | neqned 2347 | 1 ℕ∞ |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wceq 1348 wcel 2141 wne 2340 c0 3414 cif 3526 cuni 3796 cmpt 4050 com 4574 cfv 5198 c1o 6388 ℕ∞xnninf 7096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1o 6395 |
This theorem is referenced by: exmidsbthrlem 14054 |
Copyright terms: Public domain | W3C validator |