Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > peano3nninf | Unicode version |
Description: The successor function on ℕ∞ is never zero. Half of Lemma 3.4 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 1-Aug-2022.) |
Ref | Expression |
---|---|
peano3nninf.s | ℕ∞ |
Ref | Expression |
---|---|
peano3nninf | ℕ∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 5485 | . . . . . . . . . 10 | |
2 | 1 | ifeq2d 3538 | . . . . . . . . 9 |
3 | 2 | mpteq2dv 4073 | . . . . . . . 8 |
4 | peano3nninf.s | . . . . . . . 8 ℕ∞ | |
5 | omex 4570 | . . . . . . . . 9 | |
6 | 5 | mptex 5711 | . . . . . . . 8 |
7 | 3, 4, 6 | fvmpt 5563 | . . . . . . 7 ℕ∞ |
8 | eqeq1 2172 | . . . . . . . . 9 | |
9 | unieq 3798 | . . . . . . . . . 10 | |
10 | 9 | fveq2d 5490 | . . . . . . . . 9 |
11 | 8, 10 | ifbieq2d 3544 | . . . . . . . 8 |
12 | 11 | adantl 275 | . . . . . . 7 ℕ∞ |
13 | peano1 4571 | . . . . . . . 8 | |
14 | 13 | a1i 9 | . . . . . . 7 ℕ∞ |
15 | eqid 2165 | . . . . . . . . . 10 | |
16 | 15 | iftruei 3526 | . . . . . . . . 9 |
17 | 1onn 6488 | . . . . . . . . 9 | |
18 | 16, 17 | eqeltri 2239 | . . . . . . . 8 |
19 | 18 | a1i 9 | . . . . . . 7 ℕ∞ |
20 | 7, 12, 14, 19 | fvmptd 5567 | . . . . . 6 ℕ∞ |
21 | 20, 16 | eqtrdi 2215 | . . . . 5 ℕ∞ |
22 | 21 | adantr 274 | . . . 4 ℕ∞ |
23 | fveq1 5485 | . . . . . 6 | |
24 | 23 | adantl 275 | . . . . 5 ℕ∞ |
25 | 15 | a1i 9 | . . . . . . 7 |
26 | eqid 2165 | . . . . . . 7 | |
27 | 25, 26 | fvmptg 5562 | . . . . . 6 |
28 | 13, 13, 27 | mp2an 423 | . . . . 5 |
29 | 24, 28 | eqtrdi 2215 | . . . 4 ℕ∞ |
30 | 22, 29 | eqtr3d 2200 | . . 3 ℕ∞ |
31 | 1n0 6400 | . . . . 5 | |
32 | 31 | neii 2338 | . . . 4 |
33 | 32 | a1i 9 | . . 3 ℕ∞ |
34 | 30, 33 | pm2.65da 651 | . 2 ℕ∞ |
35 | 34 | neqned 2343 | 1 ℕ∞ |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wceq 1343 wcel 2136 wne 2336 c0 3409 cif 3520 cuni 3789 cmpt 4043 com 4567 cfv 5188 c1o 6377 ℕ∞xnninf 7084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1o 6384 |
This theorem is referenced by: exmidsbthrlem 13901 |
Copyright terms: Public domain | W3C validator |