Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  peano3nninf Unicode version

Theorem peano3nninf 16332
Description: The successor function on ℕ is never zero. Half of Lemma 3.4 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 1-Aug-2022.)
Hypothesis
Ref Expression
peano3nninf.s  |-  S  =  ( p  e. 
|->  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) ) ) )
Assertion
Ref Expression
peano3nninf  |-  ( A  e.  ->  ( S `  A
)  =/=  ( x  e.  om  |->  (/) ) )
Distinct variable groups:    A, i, p    S, i, x    x, p
Allowed substitution hints:    A( x)    S( p)

Proof of Theorem peano3nninf
StepHypRef Expression
1 fveq1 5625 . . . . . . . . . 10  |-  ( p  =  A  ->  (
p `  U. i )  =  ( A `  U. i ) )
21ifeq2d 3621 . . . . . . . . 9  |-  ( p  =  A  ->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) )  =  if ( i  =  (/) ,  1o ,  ( A `  U. i ) ) )
32mpteq2dv 4174 . . . . . . . 8  |-  ( p  =  A  ->  (
i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) ) )  =  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( A `
 U. i ) ) ) )
4 peano3nninf.s . . . . . . . 8  |-  S  =  ( p  e. 
|->  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) ) ) )
5 omex 4684 . . . . . . . . 9  |-  om  e.  _V
65mptex 5864 . . . . . . . 8  |-  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( A `  U. i ) ) )  e.  _V
73, 4, 6fvmpt 5710 . . . . . . 7  |-  ( A  e.  ->  ( S `  A
)  =  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( A `  U. i ) ) ) )
8 eqeq1 2236 . . . . . . . . 9  |-  ( i  =  (/)  ->  ( i  =  (/)  <->  (/)  =  (/) ) )
9 unieq 3896 . . . . . . . . . 10  |-  ( i  =  (/)  ->  U. i  =  U. (/) )
109fveq2d 5630 . . . . . . . . 9  |-  ( i  =  (/)  ->  ( A `
 U. i )  =  ( A `  U. (/) ) )
118, 10ifbieq2d 3627 . . . . . . . 8  |-  ( i  =  (/)  ->  if ( i  =  (/) ,  1o ,  ( A `  U. i ) )  =  if ( (/)  =  (/) ,  1o ,  ( A `
 U. (/) ) ) )
1211adantl 277 . . . . . . 7  |-  ( ( A  e.  /\  i  =  (/) )  ->  if ( i  =  (/) ,  1o , 
( A `  U. i ) )  =  if ( (/)  =  (/) ,  1o ,  ( A `
 U. (/) ) ) )
13 peano1 4685 . . . . . . . 8  |-  (/)  e.  om
1413a1i 9 . . . . . . 7  |-  ( A  e.  -> 
(/)  e.  om )
15 eqid 2229 . . . . . . . . . 10  |-  (/)  =  (/)
1615iftruei 3608 . . . . . . . . 9  |-  if (
(/)  =  (/) ,  1o ,  ( A `  U. (/) ) )  =  1o
17 1onn 6664 . . . . . . . . 9  |-  1o  e.  om
1816, 17eqeltri 2302 . . . . . . . 8  |-  if (
(/)  =  (/) ,  1o ,  ( A `  U. (/) ) )  e. 
om
1918a1i 9 . . . . . . 7  |-  ( A  e.  ->  if ( (/)  =  (/) ,  1o ,  ( A `
 U. (/) ) )  e.  om )
207, 12, 14, 19fvmptd 5714 . . . . . 6  |-  ( A  e.  ->  ( ( S `  A ) `  (/) )  =  if ( (/)  =  (/) ,  1o ,  ( A `
 U. (/) ) ) )
2120, 16eqtrdi 2278 . . . . 5  |-  ( A  e.  ->  ( ( S `  A ) `  (/) )  =  1o )
2221adantr 276 . . . 4  |-  ( ( A  e.  /\  ( S `  A )  =  ( x  e.  om  |->  (/) ) )  ->  (
( S `  A
) `  (/) )  =  1o )
23 fveq1 5625 . . . . . 6  |-  ( ( S `  A )  =  ( x  e. 
om  |->  (/) )  ->  (
( S `  A
) `  (/) )  =  ( ( x  e. 
om  |->  (/) ) `  (/) ) )
2423adantl 277 . . . . 5  |-  ( ( A  e.  /\  ( S `  A )  =  ( x  e.  om  |->  (/) ) )  ->  (
( S `  A
) `  (/) )  =  ( ( x  e. 
om  |->  (/) ) `  (/) ) )
2515a1i 9 . . . . . . 7  |-  ( x  =  (/)  ->  (/)  =  (/) )
26 eqid 2229 . . . . . . 7  |-  ( x  e.  om  |->  (/) )  =  ( x  e.  om  |->  (/) )
2725, 26fvmptg 5709 . . . . . 6  |-  ( (
(/)  e.  om  /\  (/)  e.  om )  ->  ( ( x  e.  om  |->  (/) ) `  (/) )  =  (/) )
2813, 13, 27mp2an 426 . . . . 5  |-  ( ( x  e.  om  |->  (/) ) `  (/) )  =  (/)
2924, 28eqtrdi 2278 . . . 4  |-  ( ( A  e.  /\  ( S `  A )  =  ( x  e.  om  |->  (/) ) )  ->  (
( S `  A
) `  (/) )  =  (/) )
3022, 29eqtr3d 2264 . . 3  |-  ( ( A  e.  /\  ( S `  A )  =  ( x  e.  om  |->  (/) ) )  ->  1o  =  (/) )
31 1n0 6576 . . . . 5  |-  1o  =/=  (/)
3231neii 2402 . . . 4  |-  -.  1o  =  (/)
3332a1i 9 . . 3  |-  ( ( A  e.  /\  ( S `  A )  =  ( x  e.  om  |->  (/) ) )  ->  -.  1o  =  (/) )
3430, 33pm2.65da 665 . 2  |-  ( A  e.  ->  -.  ( S `  A )  =  ( x  e.  om  |->  (/) ) )
3534neqned 2407 1  |-  ( A  e.  ->  ( S `  A
)  =/=  ( x  e.  om  |->  (/) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    =/= wne 2400   (/)c0 3491   ifcif 3602   U.cuni 3887    |-> cmpt 4144   omcom 4681   ` cfv 5317   1oc1o 6553  ℕxnninf 7282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1o 6560
This theorem is referenced by:  exmidsbthrlem  16349
  Copyright terms: Public domain W3C validator