| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > peano3nninf | Unicode version | ||
| Description: The successor function on ℕ∞ is never zero. Half of Lemma 3.4 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 1-Aug-2022.) |
| Ref | Expression |
|---|---|
| peano3nninf.s |
|
| Ref | Expression |
|---|---|
| peano3nninf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 5593 |
. . . . . . . . . 10
| |
| 2 | 1 | ifeq2d 3594 |
. . . . . . . . 9
|
| 3 | 2 | mpteq2dv 4146 |
. . . . . . . 8
|
| 4 | peano3nninf.s |
. . . . . . . 8
| |
| 5 | omex 4654 |
. . . . . . . . 9
| |
| 6 | 5 | mptex 5828 |
. . . . . . . 8
|
| 7 | 3, 4, 6 | fvmpt 5674 |
. . . . . . 7
|
| 8 | eqeq1 2213 |
. . . . . . . . 9
| |
| 9 | unieq 3868 |
. . . . . . . . . 10
| |
| 10 | 9 | fveq2d 5598 |
. . . . . . . . 9
|
| 11 | 8, 10 | ifbieq2d 3600 |
. . . . . . . 8
|
| 12 | 11 | adantl 277 |
. . . . . . 7
|
| 13 | peano1 4655 |
. . . . . . . 8
| |
| 14 | 13 | a1i 9 |
. . . . . . 7
|
| 15 | eqid 2206 |
. . . . . . . . . 10
| |
| 16 | 15 | iftruei 3581 |
. . . . . . . . 9
|
| 17 | 1onn 6624 |
. . . . . . . . 9
| |
| 18 | 16, 17 | eqeltri 2279 |
. . . . . . . 8
|
| 19 | 18 | a1i 9 |
. . . . . . 7
|
| 20 | 7, 12, 14, 19 | fvmptd 5678 |
. . . . . 6
|
| 21 | 20, 16 | eqtrdi 2255 |
. . . . 5
|
| 22 | 21 | adantr 276 |
. . . 4
|
| 23 | fveq1 5593 |
. . . . . 6
| |
| 24 | 23 | adantl 277 |
. . . . 5
|
| 25 | 15 | a1i 9 |
. . . . . . 7
|
| 26 | eqid 2206 |
. . . . . . 7
| |
| 27 | 25, 26 | fvmptg 5673 |
. . . . . 6
|
| 28 | 13, 13, 27 | mp2an 426 |
. . . . 5
|
| 29 | 24, 28 | eqtrdi 2255 |
. . . 4
|
| 30 | 22, 29 | eqtr3d 2241 |
. . 3
|
| 31 | 1n0 6536 |
. . . . 5
| |
| 32 | 31 | neii 2379 |
. . . 4
|
| 33 | 32 | a1i 9 |
. . 3
|
| 34 | 30, 33 | pm2.65da 663 |
. 2
|
| 35 | 34 | neqned 2384 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-iinf 4649 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-1o 6520 |
| This theorem is referenced by: exmidsbthrlem 16133 |
| Copyright terms: Public domain | W3C validator |