Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > peano3nninf | Unicode version |
Description: The successor function on ℕ∞ is never zero. Half of Lemma 3.4 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 1-Aug-2022.) |
Ref | Expression |
---|---|
peano3nninf.s | ℕ∞ |
Ref | Expression |
---|---|
peano3nninf | ℕ∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 5460 | . . . . . . . . . 10 | |
2 | 1 | ifeq2d 3519 | . . . . . . . . 9 |
3 | 2 | mpteq2dv 4051 | . . . . . . . 8 |
4 | peano3nninf.s | . . . . . . . 8 ℕ∞ | |
5 | omex 4546 | . . . . . . . . 9 | |
6 | 5 | mptex 5686 | . . . . . . . 8 |
7 | 3, 4, 6 | fvmpt 5538 | . . . . . . 7 ℕ∞ |
8 | eqeq1 2161 | . . . . . . . . 9 | |
9 | unieq 3777 | . . . . . . . . . 10 | |
10 | 9 | fveq2d 5465 | . . . . . . . . 9 |
11 | 8, 10 | ifbieq2d 3525 | . . . . . . . 8 |
12 | 11 | adantl 275 | . . . . . . 7 ℕ∞ |
13 | peano1 4547 | . . . . . . . 8 | |
14 | 13 | a1i 9 | . . . . . . 7 ℕ∞ |
15 | eqid 2154 | . . . . . . . . . 10 | |
16 | 15 | iftruei 3507 | . . . . . . . . 9 |
17 | 1onn 6456 | . . . . . . . . 9 | |
18 | 16, 17 | eqeltri 2227 | . . . . . . . 8 |
19 | 18 | a1i 9 | . . . . . . 7 ℕ∞ |
20 | 7, 12, 14, 19 | fvmptd 5542 | . . . . . 6 ℕ∞ |
21 | 20, 16 | eqtrdi 2203 | . . . . 5 ℕ∞ |
22 | 21 | adantr 274 | . . . 4 ℕ∞ |
23 | fveq1 5460 | . . . . . 6 | |
24 | 23 | adantl 275 | . . . . 5 ℕ∞ |
25 | 15 | a1i 9 | . . . . . . 7 |
26 | eqid 2154 | . . . . . . 7 | |
27 | 25, 26 | fvmptg 5537 | . . . . . 6 |
28 | 13, 13, 27 | mp2an 423 | . . . . 5 |
29 | 24, 28 | eqtrdi 2203 | . . . 4 ℕ∞ |
30 | 22, 29 | eqtr3d 2189 | . . 3 ℕ∞ |
31 | 1n0 6369 | . . . . 5 | |
32 | 31 | neii 2326 | . . . 4 |
33 | 32 | a1i 9 | . . 3 ℕ∞ |
34 | 30, 33 | pm2.65da 651 | . 2 ℕ∞ |
35 | 34 | neqned 2331 | 1 ℕ∞ |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wceq 1332 wcel 2125 wne 2324 c0 3390 cif 3501 cuni 3768 cmpt 4021 com 4543 cfv 5163 c1o 6346 ℕ∞xnninf 7049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-iinf 4541 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-if 3502 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-1o 6353 |
This theorem is referenced by: exmidsbthrlem 13542 |
Copyright terms: Public domain | W3C validator |