Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  peano3nninf Unicode version

Theorem peano3nninf 13201
Description: The successor function on ℕ is never zero. Half of Lemma 3.4 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 1-Aug-2022.)
Hypothesis
Ref Expression
peano3nninf.s  |-  S  =  ( p  e. 
|->  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) ) ) )
Assertion
Ref Expression
peano3nninf  |-  ( A  e.  ->  ( S `  A
)  =/=  ( x  e.  om  |->  (/) ) )
Distinct variable groups:    A, i, p    S, i, x    x, p
Allowed substitution hints:    A( x)    S( p)

Proof of Theorem peano3nninf
StepHypRef Expression
1 fveq1 5420 . . . . . . . . . 10  |-  ( p  =  A  ->  (
p `  U. i )  =  ( A `  U. i ) )
21ifeq2d 3490 . . . . . . . . 9  |-  ( p  =  A  ->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) )  =  if ( i  =  (/) ,  1o ,  ( A `  U. i ) ) )
32mpteq2dv 4019 . . . . . . . 8  |-  ( p  =  A  ->  (
i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) ) )  =  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( A `
 U. i ) ) ) )
4 peano3nninf.s . . . . . . . 8  |-  S  =  ( p  e. 
|->  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) ) ) )
5 omex 4507 . . . . . . . . 9  |-  om  e.  _V
65mptex 5646 . . . . . . . 8  |-  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( A `  U. i ) ) )  e.  _V
73, 4, 6fvmpt 5498 . . . . . . 7  |-  ( A  e.  ->  ( S `  A
)  =  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( A `  U. i ) ) ) )
8 eqeq1 2146 . . . . . . . . 9  |-  ( i  =  (/)  ->  ( i  =  (/)  <->  (/)  =  (/) ) )
9 unieq 3745 . . . . . . . . . 10  |-  ( i  =  (/)  ->  U. i  =  U. (/) )
109fveq2d 5425 . . . . . . . . 9  |-  ( i  =  (/)  ->  ( A `
 U. i )  =  ( A `  U. (/) ) )
118, 10ifbieq2d 3496 . . . . . . . 8  |-  ( i  =  (/)  ->  if ( i  =  (/) ,  1o ,  ( A `  U. i ) )  =  if ( (/)  =  (/) ,  1o ,  ( A `
 U. (/) ) ) )
1211adantl 275 . . . . . . 7  |-  ( ( A  e.  /\  i  =  (/) )  ->  if ( i  =  (/) ,  1o , 
( A `  U. i ) )  =  if ( (/)  =  (/) ,  1o ,  ( A `
 U. (/) ) ) )
13 peano1 4508 . . . . . . . 8  |-  (/)  e.  om
1413a1i 9 . . . . . . 7  |-  ( A  e.  -> 
(/)  e.  om )
15 eqid 2139 . . . . . . . . . 10  |-  (/)  =  (/)
1615iftruei 3480 . . . . . . . . 9  |-  if (
(/)  =  (/) ,  1o ,  ( A `  U. (/) ) )  =  1o
17 1onn 6416 . . . . . . . . 9  |-  1o  e.  om
1816, 17eqeltri 2212 . . . . . . . 8  |-  if (
(/)  =  (/) ,  1o ,  ( A `  U. (/) ) )  e. 
om
1918a1i 9 . . . . . . 7  |-  ( A  e.  ->  if ( (/)  =  (/) ,  1o ,  ( A `
 U. (/) ) )  e.  om )
207, 12, 14, 19fvmptd 5502 . . . . . 6  |-  ( A  e.  ->  ( ( S `  A ) `  (/) )  =  if ( (/)  =  (/) ,  1o ,  ( A `
 U. (/) ) ) )
2120, 16syl6eq 2188 . . . . 5  |-  ( A  e.  ->  ( ( S `  A ) `  (/) )  =  1o )
2221adantr 274 . . . 4  |-  ( ( A  e.  /\  ( S `  A )  =  ( x  e.  om  |->  (/) ) )  ->  (
( S `  A
) `  (/) )  =  1o )
23 fveq1 5420 . . . . . 6  |-  ( ( S `  A )  =  ( x  e. 
om  |->  (/) )  ->  (
( S `  A
) `  (/) )  =  ( ( x  e. 
om  |->  (/) ) `  (/) ) )
2423adantl 275 . . . . 5  |-  ( ( A  e.  /\  ( S `  A )  =  ( x  e.  om  |->  (/) ) )  ->  (
( S `  A
) `  (/) )  =  ( ( x  e. 
om  |->  (/) ) `  (/) ) )
2515a1i 9 . . . . . . 7  |-  ( x  =  (/)  ->  (/)  =  (/) )
26 eqid 2139 . . . . . . 7  |-  ( x  e.  om  |->  (/) )  =  ( x  e.  om  |->  (/) )
2725, 26fvmptg 5497 . . . . . 6  |-  ( (
(/)  e.  om  /\  (/)  e.  om )  ->  ( ( x  e.  om  |->  (/) ) `  (/) )  =  (/) )
2813, 13, 27mp2an 422 . . . . 5  |-  ( ( x  e.  om  |->  (/) ) `  (/) )  =  (/)
2924, 28syl6eq 2188 . . . 4  |-  ( ( A  e.  /\  ( S `  A )  =  ( x  e.  om  |->  (/) ) )  ->  (
( S `  A
) `  (/) )  =  (/) )
3022, 29eqtr3d 2174 . . 3  |-  ( ( A  e.  /\  ( S `  A )  =  ( x  e.  om  |->  (/) ) )  ->  1o  =  (/) )
31 1n0 6329 . . . . 5  |-  1o  =/=  (/)
3231neii 2310 . . . 4  |-  -.  1o  =  (/)
3332a1i 9 . . 3  |-  ( ( A  e.  /\  ( S `  A )  =  ( x  e.  om  |->  (/) ) )  ->  -.  1o  =  (/) )
3430, 33pm2.65da 650 . 2  |-  ( A  e.  ->  -.  ( S `  A )  =  ( x  e.  om  |->  (/) ) )
3534neqned 2315 1  |-  ( A  e.  ->  ( S `  A
)  =/=  ( x  e.  om  |->  (/) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480    =/= wne 2308   (/)c0 3363   ifcif 3474   U.cuni 3736    |-> cmpt 3989   omcom 4504   ` cfv 5123   1oc1o 6306  ℕxnninf 7005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1o 6313
This theorem is referenced by:  exmidsbthrlem  13217
  Copyright terms: Public domain W3C validator