| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > peano3nninf | Unicode version | ||
| Description: The successor function on ℕ∞ is never zero. Half of Lemma 3.4 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 1-Aug-2022.) |
| Ref | Expression |
|---|---|
| peano3nninf.s |
|
| Ref | Expression |
|---|---|
| peano3nninf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 5574 |
. . . . . . . . . 10
| |
| 2 | 1 | ifeq2d 3588 |
. . . . . . . . 9
|
| 3 | 2 | mpteq2dv 4134 |
. . . . . . . 8
|
| 4 | peano3nninf.s |
. . . . . . . 8
| |
| 5 | omex 4640 |
. . . . . . . . 9
| |
| 6 | 5 | mptex 5809 |
. . . . . . . 8
|
| 7 | 3, 4, 6 | fvmpt 5655 |
. . . . . . 7
|
| 8 | eqeq1 2211 |
. . . . . . . . 9
| |
| 9 | unieq 3858 |
. . . . . . . . . 10
| |
| 10 | 9 | fveq2d 5579 |
. . . . . . . . 9
|
| 11 | 8, 10 | ifbieq2d 3594 |
. . . . . . . 8
|
| 12 | 11 | adantl 277 |
. . . . . . 7
|
| 13 | peano1 4641 |
. . . . . . . 8
| |
| 14 | 13 | a1i 9 |
. . . . . . 7
|
| 15 | eqid 2204 |
. . . . . . . . . 10
| |
| 16 | 15 | iftruei 3576 |
. . . . . . . . 9
|
| 17 | 1onn 6605 |
. . . . . . . . 9
| |
| 18 | 16, 17 | eqeltri 2277 |
. . . . . . . 8
|
| 19 | 18 | a1i 9 |
. . . . . . 7
|
| 20 | 7, 12, 14, 19 | fvmptd 5659 |
. . . . . 6
|
| 21 | 20, 16 | eqtrdi 2253 |
. . . . 5
|
| 22 | 21 | adantr 276 |
. . . 4
|
| 23 | fveq1 5574 |
. . . . . 6
| |
| 24 | 23 | adantl 277 |
. . . . 5
|
| 25 | 15 | a1i 9 |
. . . . . . 7
|
| 26 | eqid 2204 |
. . . . . . 7
| |
| 27 | 25, 26 | fvmptg 5654 |
. . . . . 6
|
| 28 | 13, 13, 27 | mp2an 426 |
. . . . 5
|
| 29 | 24, 28 | eqtrdi 2253 |
. . . 4
|
| 30 | 22, 29 | eqtr3d 2239 |
. . 3
|
| 31 | 1n0 6517 |
. . . . 5
| |
| 32 | 31 | neii 2377 |
. . . 4
|
| 33 | 32 | a1i 9 |
. . 3
|
| 34 | 30, 33 | pm2.65da 662 |
. 2
|
| 35 | 34 | neqned 2382 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-1o 6501 |
| This theorem is referenced by: exmidsbthrlem 15894 |
| Copyright terms: Public domain | W3C validator |