Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  peano3nninf Unicode version

Theorem peano3nninf 15497
Description: The successor function on ℕ is never zero. Half of Lemma 3.4 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 1-Aug-2022.)
Hypothesis
Ref Expression
peano3nninf.s  |-  S  =  ( p  e. 
|->  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) ) ) )
Assertion
Ref Expression
peano3nninf  |-  ( A  e.  ->  ( S `  A
)  =/=  ( x  e.  om  |->  (/) ) )
Distinct variable groups:    A, i, p    S, i, x    x, p
Allowed substitution hints:    A( x)    S( p)

Proof of Theorem peano3nninf
StepHypRef Expression
1 fveq1 5553 . . . . . . . . . 10  |-  ( p  =  A  ->  (
p `  U. i )  =  ( A `  U. i ) )
21ifeq2d 3575 . . . . . . . . 9  |-  ( p  =  A  ->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) )  =  if ( i  =  (/) ,  1o ,  ( A `  U. i ) ) )
32mpteq2dv 4120 . . . . . . . 8  |-  ( p  =  A  ->  (
i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) ) )  =  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( A `
 U. i ) ) ) )
4 peano3nninf.s . . . . . . . 8  |-  S  =  ( p  e. 
|->  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) ) ) )
5 omex 4625 . . . . . . . . 9  |-  om  e.  _V
65mptex 5784 . . . . . . . 8  |-  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( A `  U. i ) ) )  e.  _V
73, 4, 6fvmpt 5634 . . . . . . 7  |-  ( A  e.  ->  ( S `  A
)  =  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( A `  U. i ) ) ) )
8 eqeq1 2200 . . . . . . . . 9  |-  ( i  =  (/)  ->  ( i  =  (/)  <->  (/)  =  (/) ) )
9 unieq 3844 . . . . . . . . . 10  |-  ( i  =  (/)  ->  U. i  =  U. (/) )
109fveq2d 5558 . . . . . . . . 9  |-  ( i  =  (/)  ->  ( A `
 U. i )  =  ( A `  U. (/) ) )
118, 10ifbieq2d 3581 . . . . . . . 8  |-  ( i  =  (/)  ->  if ( i  =  (/) ,  1o ,  ( A `  U. i ) )  =  if ( (/)  =  (/) ,  1o ,  ( A `
 U. (/) ) ) )
1211adantl 277 . . . . . . 7  |-  ( ( A  e.  /\  i  =  (/) )  ->  if ( i  =  (/) ,  1o , 
( A `  U. i ) )  =  if ( (/)  =  (/) ,  1o ,  ( A `
 U. (/) ) ) )
13 peano1 4626 . . . . . . . 8  |-  (/)  e.  om
1413a1i 9 . . . . . . 7  |-  ( A  e.  -> 
(/)  e.  om )
15 eqid 2193 . . . . . . . . . 10  |-  (/)  =  (/)
1615iftruei 3563 . . . . . . . . 9  |-  if (
(/)  =  (/) ,  1o ,  ( A `  U. (/) ) )  =  1o
17 1onn 6573 . . . . . . . . 9  |-  1o  e.  om
1816, 17eqeltri 2266 . . . . . . . 8  |-  if (
(/)  =  (/) ,  1o ,  ( A `  U. (/) ) )  e. 
om
1918a1i 9 . . . . . . 7  |-  ( A  e.  ->  if ( (/)  =  (/) ,  1o ,  ( A `
 U. (/) ) )  e.  om )
207, 12, 14, 19fvmptd 5638 . . . . . 6  |-  ( A  e.  ->  ( ( S `  A ) `  (/) )  =  if ( (/)  =  (/) ,  1o ,  ( A `
 U. (/) ) ) )
2120, 16eqtrdi 2242 . . . . 5  |-  ( A  e.  ->  ( ( S `  A ) `  (/) )  =  1o )
2221adantr 276 . . . 4  |-  ( ( A  e.  /\  ( S `  A )  =  ( x  e.  om  |->  (/) ) )  ->  (
( S `  A
) `  (/) )  =  1o )
23 fveq1 5553 . . . . . 6  |-  ( ( S `  A )  =  ( x  e. 
om  |->  (/) )  ->  (
( S `  A
) `  (/) )  =  ( ( x  e. 
om  |->  (/) ) `  (/) ) )
2423adantl 277 . . . . 5  |-  ( ( A  e.  /\  ( S `  A )  =  ( x  e.  om  |->  (/) ) )  ->  (
( S `  A
) `  (/) )  =  ( ( x  e. 
om  |->  (/) ) `  (/) ) )
2515a1i 9 . . . . . . 7  |-  ( x  =  (/)  ->  (/)  =  (/) )
26 eqid 2193 . . . . . . 7  |-  ( x  e.  om  |->  (/) )  =  ( x  e.  om  |->  (/) )
2725, 26fvmptg 5633 . . . . . 6  |-  ( (
(/)  e.  om  /\  (/)  e.  om )  ->  ( ( x  e.  om  |->  (/) ) `  (/) )  =  (/) )
2813, 13, 27mp2an 426 . . . . 5  |-  ( ( x  e.  om  |->  (/) ) `  (/) )  =  (/)
2924, 28eqtrdi 2242 . . . 4  |-  ( ( A  e.  /\  ( S `  A )  =  ( x  e.  om  |->  (/) ) )  ->  (
( S `  A
) `  (/) )  =  (/) )
3022, 29eqtr3d 2228 . . 3  |-  ( ( A  e.  /\  ( S `  A )  =  ( x  e.  om  |->  (/) ) )  ->  1o  =  (/) )
31 1n0 6485 . . . . 5  |-  1o  =/=  (/)
3231neii 2366 . . . 4  |-  -.  1o  =  (/)
3332a1i 9 . . 3  |-  ( ( A  e.  /\  ( S `  A )  =  ( x  e.  om  |->  (/) ) )  ->  -.  1o  =  (/) )
3430, 33pm2.65da 662 . 2  |-  ( A  e.  ->  -.  ( S `  A )  =  ( x  e.  om  |->  (/) ) )
3534neqned 2371 1  |-  ( A  e.  ->  ( S `  A
)  =/=  ( x  e.  om  |->  (/) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164    =/= wne 2364   (/)c0 3446   ifcif 3557   U.cuni 3835    |-> cmpt 4090   omcom 4622   ` cfv 5254   1oc1o 6462  ℕxnninf 7178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1o 6469
This theorem is referenced by:  exmidsbthrlem  15512
  Copyright terms: Public domain W3C validator