| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > peano3nninf | Unicode version | ||
| Description: The successor function on ℕ∞ is never zero. Half of Lemma 3.4 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 1-Aug-2022.) |
| Ref | Expression |
|---|---|
| peano3nninf.s |
|
| Ref | Expression |
|---|---|
| peano3nninf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 5625 |
. . . . . . . . . 10
| |
| 2 | 1 | ifeq2d 3621 |
. . . . . . . . 9
|
| 3 | 2 | mpteq2dv 4174 |
. . . . . . . 8
|
| 4 | peano3nninf.s |
. . . . . . . 8
| |
| 5 | omex 4684 |
. . . . . . . . 9
| |
| 6 | 5 | mptex 5864 |
. . . . . . . 8
|
| 7 | 3, 4, 6 | fvmpt 5710 |
. . . . . . 7
|
| 8 | eqeq1 2236 |
. . . . . . . . 9
| |
| 9 | unieq 3896 |
. . . . . . . . . 10
| |
| 10 | 9 | fveq2d 5630 |
. . . . . . . . 9
|
| 11 | 8, 10 | ifbieq2d 3627 |
. . . . . . . 8
|
| 12 | 11 | adantl 277 |
. . . . . . 7
|
| 13 | peano1 4685 |
. . . . . . . 8
| |
| 14 | 13 | a1i 9 |
. . . . . . 7
|
| 15 | eqid 2229 |
. . . . . . . . . 10
| |
| 16 | 15 | iftruei 3608 |
. . . . . . . . 9
|
| 17 | 1onn 6664 |
. . . . . . . . 9
| |
| 18 | 16, 17 | eqeltri 2302 |
. . . . . . . 8
|
| 19 | 18 | a1i 9 |
. . . . . . 7
|
| 20 | 7, 12, 14, 19 | fvmptd 5714 |
. . . . . 6
|
| 21 | 20, 16 | eqtrdi 2278 |
. . . . 5
|
| 22 | 21 | adantr 276 |
. . . 4
|
| 23 | fveq1 5625 |
. . . . . 6
| |
| 24 | 23 | adantl 277 |
. . . . 5
|
| 25 | 15 | a1i 9 |
. . . . . . 7
|
| 26 | eqid 2229 |
. . . . . . 7
| |
| 27 | 25, 26 | fvmptg 5709 |
. . . . . 6
|
| 28 | 13, 13, 27 | mp2an 426 |
. . . . 5
|
| 29 | 24, 28 | eqtrdi 2278 |
. . . 4
|
| 30 | 22, 29 | eqtr3d 2264 |
. . 3
|
| 31 | 1n0 6576 |
. . . . 5
| |
| 32 | 31 | neii 2402 |
. . . 4
|
| 33 | 32 | a1i 9 |
. . 3
|
| 34 | 30, 33 | pm2.65da 665 |
. 2
|
| 35 | 34 | neqned 2407 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-1o 6560 |
| This theorem is referenced by: exmidsbthrlem 16349 |
| Copyright terms: Public domain | W3C validator |