Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  peano3nninf Unicode version

Theorem peano3nninf 14040
Description: The successor function on ℕ is never zero. Half of Lemma 3.4 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 1-Aug-2022.)
Hypothesis
Ref Expression
peano3nninf.s  |-  S  =  ( p  e. 
|->  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) ) ) )
Assertion
Ref Expression
peano3nninf  |-  ( A  e.  ->  ( S `  A
)  =/=  ( x  e.  om  |->  (/) ) )
Distinct variable groups:    A, i, p    S, i, x    x, p
Allowed substitution hints:    A( x)    S( p)

Proof of Theorem peano3nninf
StepHypRef Expression
1 fveq1 5495 . . . . . . . . . 10  |-  ( p  =  A  ->  (
p `  U. i )  =  ( A `  U. i ) )
21ifeq2d 3544 . . . . . . . . 9  |-  ( p  =  A  ->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) )  =  if ( i  =  (/) ,  1o ,  ( A `  U. i ) ) )
32mpteq2dv 4080 . . . . . . . 8  |-  ( p  =  A  ->  (
i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) ) )  =  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( A `
 U. i ) ) ) )
4 peano3nninf.s . . . . . . . 8  |-  S  =  ( p  e. 
|->  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) ) ) )
5 omex 4577 . . . . . . . . 9  |-  om  e.  _V
65mptex 5722 . . . . . . . 8  |-  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( A `  U. i ) ) )  e.  _V
73, 4, 6fvmpt 5573 . . . . . . 7  |-  ( A  e.  ->  ( S `  A
)  =  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( A `  U. i ) ) ) )
8 eqeq1 2177 . . . . . . . . 9  |-  ( i  =  (/)  ->  ( i  =  (/)  <->  (/)  =  (/) ) )
9 unieq 3805 . . . . . . . . . 10  |-  ( i  =  (/)  ->  U. i  =  U. (/) )
109fveq2d 5500 . . . . . . . . 9  |-  ( i  =  (/)  ->  ( A `
 U. i )  =  ( A `  U. (/) ) )
118, 10ifbieq2d 3550 . . . . . . . 8  |-  ( i  =  (/)  ->  if ( i  =  (/) ,  1o ,  ( A `  U. i ) )  =  if ( (/)  =  (/) ,  1o ,  ( A `
 U. (/) ) ) )
1211adantl 275 . . . . . . 7  |-  ( ( A  e.  /\  i  =  (/) )  ->  if ( i  =  (/) ,  1o , 
( A `  U. i ) )  =  if ( (/)  =  (/) ,  1o ,  ( A `
 U. (/) ) ) )
13 peano1 4578 . . . . . . . 8  |-  (/)  e.  om
1413a1i 9 . . . . . . 7  |-  ( A  e.  -> 
(/)  e.  om )
15 eqid 2170 . . . . . . . . . 10  |-  (/)  =  (/)
1615iftruei 3532 . . . . . . . . 9  |-  if (
(/)  =  (/) ,  1o ,  ( A `  U. (/) ) )  =  1o
17 1onn 6499 . . . . . . . . 9  |-  1o  e.  om
1816, 17eqeltri 2243 . . . . . . . 8  |-  if (
(/)  =  (/) ,  1o ,  ( A `  U. (/) ) )  e. 
om
1918a1i 9 . . . . . . 7  |-  ( A  e.  ->  if ( (/)  =  (/) ,  1o ,  ( A `
 U. (/) ) )  e.  om )
207, 12, 14, 19fvmptd 5577 . . . . . 6  |-  ( A  e.  ->  ( ( S `  A ) `  (/) )  =  if ( (/)  =  (/) ,  1o ,  ( A `
 U. (/) ) ) )
2120, 16eqtrdi 2219 . . . . 5  |-  ( A  e.  ->  ( ( S `  A ) `  (/) )  =  1o )
2221adantr 274 . . . 4  |-  ( ( A  e.  /\  ( S `  A )  =  ( x  e.  om  |->  (/) ) )  ->  (
( S `  A
) `  (/) )  =  1o )
23 fveq1 5495 . . . . . 6  |-  ( ( S `  A )  =  ( x  e. 
om  |->  (/) )  ->  (
( S `  A
) `  (/) )  =  ( ( x  e. 
om  |->  (/) ) `  (/) ) )
2423adantl 275 . . . . 5  |-  ( ( A  e.  /\  ( S `  A )  =  ( x  e.  om  |->  (/) ) )  ->  (
( S `  A
) `  (/) )  =  ( ( x  e. 
om  |->  (/) ) `  (/) ) )
2515a1i 9 . . . . . . 7  |-  ( x  =  (/)  ->  (/)  =  (/) )
26 eqid 2170 . . . . . . 7  |-  ( x  e.  om  |->  (/) )  =  ( x  e.  om  |->  (/) )
2725, 26fvmptg 5572 . . . . . 6  |-  ( (
(/)  e.  om  /\  (/)  e.  om )  ->  ( ( x  e.  om  |->  (/) ) `  (/) )  =  (/) )
2813, 13, 27mp2an 424 . . . . 5  |-  ( ( x  e.  om  |->  (/) ) `  (/) )  =  (/)
2924, 28eqtrdi 2219 . . . 4  |-  ( ( A  e.  /\  ( S `  A )  =  ( x  e.  om  |->  (/) ) )  ->  (
( S `  A
) `  (/) )  =  (/) )
3022, 29eqtr3d 2205 . . 3  |-  ( ( A  e.  /\  ( S `  A )  =  ( x  e.  om  |->  (/) ) )  ->  1o  =  (/) )
31 1n0 6411 . . . . 5  |-  1o  =/=  (/)
3231neii 2342 . . . 4  |-  -.  1o  =  (/)
3332a1i 9 . . 3  |-  ( ( A  e.  /\  ( S `  A )  =  ( x  e.  om  |->  (/) ) )  ->  -.  1o  =  (/) )
3430, 33pm2.65da 656 . 2  |-  ( A  e.  ->  -.  ( S `  A )  =  ( x  e.  om  |->  (/) ) )
3534neqned 2347 1  |-  ( A  e.  ->  ( S `  A
)  =/=  ( x  e.  om  |->  (/) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141    =/= wne 2340   (/)c0 3414   ifcif 3526   U.cuni 3796    |-> cmpt 4050   omcom 4574   ` cfv 5198   1oc1o 6388  ℕxnninf 7096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1o 6395
This theorem is referenced by:  exmidsbthrlem  14054
  Copyright terms: Public domain W3C validator