| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifeq12d | Unicode version | ||
| Description: Equality deduction for conditional operator. (Contributed by NM, 24-Mar-2015.) |
| Ref | Expression |
|---|---|
| ifeq1d.1 |
|
| ifeq12d.2 |
|
| Ref | Expression |
|---|---|
| ifeq12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq1d.1 |
. . 3
| |
| 2 | 1 | ifeq1d 3578 |
. 2
|
| 3 | ifeq12d.2 |
. . 3
| |
| 4 | 3 | ifeq2d 3579 |
. 2
|
| 5 | 2, 4 | eqtrd 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-un 3161 df-if 3562 |
| This theorem is referenced by: ifbieq12d 3587 xaddpnf1 9921 exp3val 10633 eucalgval 12222 ennnfonelemp1 12623 ennnfonelemnn0 12639 mulgfvalg 13251 mulgpropdg 13294 lgsval 15245 |
| Copyright terms: Public domain | W3C validator |