Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ifeq12d | Unicode version |
Description: Equality deduction for conditional operator. (Contributed by NM, 24-Mar-2015.) |
Ref | Expression |
---|---|
ifeq1d.1 | |
ifeq12d.2 |
Ref | Expression |
---|---|
ifeq12d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1d.1 | . . 3 | |
2 | 1 | ifeq1d 3537 | . 2 |
3 | ifeq12d.2 | . . 3 | |
4 | 3 | ifeq2d 3538 | . 2 |
5 | 2, 4 | eqtrd 2198 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 cif 3520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-v 2728 df-un 3120 df-if 3521 |
This theorem is referenced by: ifbieq12d 3546 xaddpnf1 9782 exp3val 10457 eucalgval 11986 ennnfonelemp1 12339 ennnfonelemnn0 12355 lgsval 13545 |
Copyright terms: Public domain | W3C validator |