ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1arithlem4 Unicode version

Theorem 1arithlem4 12366
Description: Lemma for 1arith 12367. (Contributed by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
1arith.1  |-  M  =  ( n  e.  NN  |->  ( p  e.  Prime  |->  ( p  pCnt  n ) ) )
1arithlem4.2  |-  G  =  ( y  e.  NN  |->  if ( y  e.  Prime ,  ( y ^ ( F `  y )
) ,  1 ) )
1arithlem4.3  |-  ( ph  ->  F : Prime --> NN0 )
1arithlem4.4  |-  ( ph  ->  N  e.  NN )
1arithlem4.5  |-  ( (
ph  /\  ( q  e.  Prime  /\  N  <_  q ) )  ->  ( F `  q )  =  0 )
Assertion
Ref Expression
1arithlem4  |-  ( ph  ->  E. x  e.  NN  F  =  ( M `  x ) )
Distinct variable groups:    n, p, q, x, y    F, q, x, y    M, q, x, y    ph, q,
y    n, G, p, q, x    n, N, p, q, x
Allowed substitution hints:    ph( x, n, p)    F( n, p)    G( y)    M( n, p)    N( y)

Proof of Theorem 1arithlem4
StepHypRef Expression
1 1arithlem4.2 . . . . 5  |-  G  =  ( y  e.  NN  |->  if ( y  e.  Prime ,  ( y ^ ( F `  y )
) ,  1 ) )
2 1arithlem4.3 . . . . . . 7  |-  ( ph  ->  F : Prime --> NN0 )
32ffvelcdmda 5653 . . . . . 6  |-  ( (
ph  /\  y  e.  Prime )  ->  ( F `  y )  e.  NN0 )
43ralrimiva 2550 . . . . 5  |-  ( ph  ->  A. y  e.  Prime  ( F `  y )  e.  NN0 )
51, 4pcmptcl 12342 . . . 4  |-  ( ph  ->  ( G : NN --> NN  /\  seq 1 (  x.  ,  G ) : NN --> NN ) )
65simprd 114 . . 3  |-  ( ph  ->  seq 1 (  x.  ,  G ) : NN --> NN )
7 1arithlem4.4 . . 3  |-  ( ph  ->  N  e.  NN )
86, 7ffvelcdmd 5654 . 2  |-  ( ph  ->  (  seq 1 (  x.  ,  G ) `
 N )  e.  NN )
9 1arith.1 . . . . . . 7  |-  M  =  ( n  e.  NN  |->  ( p  e.  Prime  |->  ( p  pCnt  n ) ) )
1091arithlem2 12364 . . . . . 6  |-  ( ( (  seq 1 (  x.  ,  G ) `
 N )  e.  NN  /\  q  e. 
Prime )  ->  ( ( M `  (  seq 1 (  x.  ,  G ) `  N
) ) `  q
)  =  ( q 
pCnt  (  seq 1
(  x.  ,  G
) `  N )
) )
118, 10sylan 283 . . . . 5  |-  ( (
ph  /\  q  e.  Prime )  ->  ( ( M `  (  seq 1 (  x.  ,  G ) `  N
) ) `  q
)  =  ( q 
pCnt  (  seq 1
(  x.  ,  G
) `  N )
) )
124adantr 276 . . . . . 6  |-  ( (
ph  /\  q  e.  Prime )  ->  A. y  e.  Prime  ( F `  y )  e.  NN0 )
137adantr 276 . . . . . 6  |-  ( (
ph  /\  q  e.  Prime )  ->  N  e.  NN )
14 simpr 110 . . . . . 6  |-  ( (
ph  /\  q  e.  Prime )  ->  q  e.  Prime )
15 fveq2 5517 . . . . . 6  |-  ( y  =  q  ->  ( F `  y )  =  ( F `  q ) )
161, 12, 13, 14, 15pcmpt 12343 . . . . 5  |-  ( (
ph  /\  q  e.  Prime )  ->  ( q  pCnt  (  seq 1 (  x.  ,  G ) `
 N ) )  =  if ( q  <_  N ,  ( F `  q ) ,  0 ) )
17 1arithlem4.5 . . . . . . . . 9  |-  ( (
ph  /\  ( q  e.  Prime  /\  N  <_  q ) )  ->  ( F `  q )  =  0 )
1817anassrs 400 . . . . . . . 8  |-  ( ( ( ph  /\  q  e.  Prime )  /\  N  <_  q )  ->  ( F `  q )  =  0 )
1918ifeq2d 3554 . . . . . . 7  |-  ( ( ( ph  /\  q  e.  Prime )  /\  N  <_  q )  ->  if ( q  <_  N ,  ( F `  q ) ,  ( F `  q ) )  =  if ( q  <_  N , 
( F `  q
) ,  0 ) )
20 prmz 12113 . . . . . . . . . . 11  |-  ( q  e.  Prime  ->  q  e.  ZZ )
2120adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  Prime )  ->  q  e.  ZZ )
2213nnzd 9376 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  Prime )  ->  N  e.  ZZ )
23 zdcle 9331 . . . . . . . . . 10  |-  ( ( q  e.  ZZ  /\  N  e.  ZZ )  -> DECID  q  <_  N )
2421, 22, 23syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  q  e.  Prime )  -> DECID  q  <_  N )
25 ifiddc 3570 . . . . . . . . 9  |-  (DECID  q  <_  N  ->  if ( q  <_  N ,  ( F `  q ) ,  ( F `  q ) )  =  ( F `  q
) )
2624, 25syl 14 . . . . . . . 8  |-  ( (
ph  /\  q  e.  Prime )  ->  if (
q  <_  N , 
( F `  q
) ,  ( F `
 q ) )  =  ( F `  q ) )
2726adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  q  e.  Prime )  /\  N  <_  q )  ->  if ( q  <_  N ,  ( F `  q ) ,  ( F `  q ) )  =  ( F `
 q ) )
2819, 27eqtr3d 2212 . . . . . 6  |-  ( ( ( ph  /\  q  e.  Prime )  /\  N  <_  q )  ->  if ( q  <_  N ,  ( F `  q ) ,  0 )  =  ( F `
 q ) )
29 iftrue 3541 . . . . . . 7  |-  ( q  <_  N  ->  if ( q  <_  N ,  ( F `  q ) ,  0 )  =  ( F `
 q ) )
3029adantl 277 . . . . . 6  |-  ( ( ( ph  /\  q  e.  Prime )  /\  q  <_  N )  ->  if ( q  <_  N ,  ( F `  q ) ,  0 )  =  ( F `
 q ) )
31 zletric 9299 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  q  e.  ZZ )  ->  ( N  <_  q  \/  q  <_  N ) )
3222, 21, 31syl2anc 411 . . . . . 6  |-  ( (
ph  /\  q  e.  Prime )  ->  ( N  <_  q  \/  q  <_  N ) )
3328, 30, 32mpjaodan 798 . . . . 5  |-  ( (
ph  /\  q  e.  Prime )  ->  if (
q  <_  N , 
( F `  q
) ,  0 )  =  ( F `  q ) )
3411, 16, 333eqtrrd 2215 . . . 4  |-  ( (
ph  /\  q  e.  Prime )  ->  ( F `  q )  =  ( ( M `  (  seq 1 (  x.  ,  G ) `  N
) ) `  q
) )
3534ralrimiva 2550 . . 3  |-  ( ph  ->  A. q  e.  Prime  ( F `  q )  =  ( ( M `
 (  seq 1
(  x.  ,  G
) `  N )
) `  q )
)
3691arithlem3 12365 . . . . 5  |-  ( (  seq 1 (  x.  ,  G ) `  N )  e.  NN  ->  ( M `  (  seq 1 (  x.  ,  G ) `  N
) ) : Prime --> NN0 )
378, 36syl 14 . . . 4  |-  ( ph  ->  ( M `  (  seq 1 (  x.  ,  G ) `  N
) ) : Prime --> NN0 )
38 ffn 5367 . . . . 5  |-  ( F : Prime --> NN0  ->  F  Fn  Prime )
39 ffn 5367 . . . . 5  |-  ( ( M `  (  seq 1 (  x.  ,  G ) `  N
) ) : Prime --> NN0 
->  ( M `  (  seq 1 (  x.  ,  G ) `  N
) )  Fn  Prime )
40 eqfnfv 5615 . . . . 5  |-  ( ( F  Fn  Prime  /\  ( M `  (  seq 1 (  x.  ,  G ) `  N
) )  Fn  Prime )  ->  ( F  =  ( M `  (  seq 1 (  x.  ,  G ) `  N
) )  <->  A. q  e.  Prime  ( F `  q )  =  ( ( M `  (  seq 1 (  x.  ,  G ) `  N
) ) `  q
) ) )
4138, 39, 40syl2an 289 . . . 4  |-  ( ( F : Prime --> NN0  /\  ( M `  (  seq 1 (  x.  ,  G ) `  N
) ) : Prime --> NN0 )  ->  ( F  =  ( M `  (  seq 1 (  x.  ,  G ) `  N ) )  <->  A. q  e.  Prime  ( F `  q )  =  ( ( M `  (  seq 1 (  x.  ,  G ) `  N
) ) `  q
) ) )
422, 37, 41syl2anc 411 . . 3  |-  ( ph  ->  ( F  =  ( M `  (  seq 1 (  x.  ,  G ) `  N
) )  <->  A. q  e.  Prime  ( F `  q )  =  ( ( M `  (  seq 1 (  x.  ,  G ) `  N
) ) `  q
) ) )
4335, 42mpbird 167 . 2  |-  ( ph  ->  F  =  ( M `
 (  seq 1
(  x.  ,  G
) `  N )
) )
44 fveq2 5517 . . 3  |-  ( x  =  (  seq 1
(  x.  ,  G
) `  N )  ->  ( M `  x
)  =  ( M `
 (  seq 1
(  x.  ,  G
) `  N )
) )
4544rspceeqv 2861 . 2  |-  ( ( (  seq 1 (  x.  ,  G ) `
 N )  e.  NN  /\  F  =  ( M `  (  seq 1 (  x.  ,  G ) `  N
) ) )  ->  E. x  e.  NN  F  =  ( M `  x ) )
468, 43, 45syl2anc 411 1  |-  ( ph  ->  E. x  e.  NN  F  =  ( M `  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   ifcif 3536   class class class wbr 4005    |-> cmpt 4066    Fn wfn 5213   -->wf 5214   ` cfv 5218  (class class class)co 5877   0cc0 7813   1c1 7814    x. cmul 7818    <_ cle 7995   NNcn 8921   NN0cn0 9178   ZZcz 9255    seqcseq 10447   ^cexp 10521   Primecprime 12109    pCnt cpc 12286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-1o 6419  df-2o 6420  df-er 6537  df-en 6743  df-fin 6745  df-sup 6985  df-inf 6986  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-fz 10011  df-fzo 10145  df-fl 10272  df-mod 10325  df-seqfrec 10448  df-exp 10522  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-dvds 11797  df-gcd 11946  df-prm 12110  df-pc 12287
This theorem is referenced by:  1arith  12367
  Copyright terms: Public domain W3C validator