ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1arithlem4 Unicode version

Theorem 1arithlem4 12764
Description: Lemma for 1arith 12765. (Contributed by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
1arith.1  |-  M  =  ( n  e.  NN  |->  ( p  e.  Prime  |->  ( p  pCnt  n ) ) )
1arithlem4.2  |-  G  =  ( y  e.  NN  |->  if ( y  e.  Prime ,  ( y ^ ( F `  y )
) ,  1 ) )
1arithlem4.3  |-  ( ph  ->  F : Prime --> NN0 )
1arithlem4.4  |-  ( ph  ->  N  e.  NN )
1arithlem4.5  |-  ( (
ph  /\  ( q  e.  Prime  /\  N  <_  q ) )  ->  ( F `  q )  =  0 )
Assertion
Ref Expression
1arithlem4  |-  ( ph  ->  E. x  e.  NN  F  =  ( M `  x ) )
Distinct variable groups:    n, p, q, x, y    F, q, x, y    M, q, x, y    ph, q,
y    n, G, p, q, x    n, N, p, q, x
Allowed substitution hints:    ph( x, n, p)    F( n, p)    G( y)    M( n, p)    N( y)

Proof of Theorem 1arithlem4
StepHypRef Expression
1 1arithlem4.2 . . . . 5  |-  G  =  ( y  e.  NN  |->  if ( y  e.  Prime ,  ( y ^ ( F `  y )
) ,  1 ) )
2 1arithlem4.3 . . . . . . 7  |-  ( ph  ->  F : Prime --> NN0 )
32ffvelcdmda 5728 . . . . . 6  |-  ( (
ph  /\  y  e.  Prime )  ->  ( F `  y )  e.  NN0 )
43ralrimiva 2580 . . . . 5  |-  ( ph  ->  A. y  e.  Prime  ( F `  y )  e.  NN0 )
51, 4pcmptcl 12740 . . . 4  |-  ( ph  ->  ( G : NN --> NN  /\  seq 1 (  x.  ,  G ) : NN --> NN ) )
65simprd 114 . . 3  |-  ( ph  ->  seq 1 (  x.  ,  G ) : NN --> NN )
7 1arithlem4.4 . . 3  |-  ( ph  ->  N  e.  NN )
86, 7ffvelcdmd 5729 . 2  |-  ( ph  ->  (  seq 1 (  x.  ,  G ) `
 N )  e.  NN )
9 1arith.1 . . . . . . 7  |-  M  =  ( n  e.  NN  |->  ( p  e.  Prime  |->  ( p  pCnt  n ) ) )
1091arithlem2 12762 . . . . . 6  |-  ( ( (  seq 1 (  x.  ,  G ) `
 N )  e.  NN  /\  q  e. 
Prime )  ->  ( ( M `  (  seq 1 (  x.  ,  G ) `  N
) ) `  q
)  =  ( q 
pCnt  (  seq 1
(  x.  ,  G
) `  N )
) )
118, 10sylan 283 . . . . 5  |-  ( (
ph  /\  q  e.  Prime )  ->  ( ( M `  (  seq 1 (  x.  ,  G ) `  N
) ) `  q
)  =  ( q 
pCnt  (  seq 1
(  x.  ,  G
) `  N )
) )
124adantr 276 . . . . . 6  |-  ( (
ph  /\  q  e.  Prime )  ->  A. y  e.  Prime  ( F `  y )  e.  NN0 )
137adantr 276 . . . . . 6  |-  ( (
ph  /\  q  e.  Prime )  ->  N  e.  NN )
14 simpr 110 . . . . . 6  |-  ( (
ph  /\  q  e.  Prime )  ->  q  e.  Prime )
15 fveq2 5589 . . . . . 6  |-  ( y  =  q  ->  ( F `  y )  =  ( F `  q ) )
161, 12, 13, 14, 15pcmpt 12741 . . . . 5  |-  ( (
ph  /\  q  e.  Prime )  ->  ( q  pCnt  (  seq 1 (  x.  ,  G ) `
 N ) )  =  if ( q  <_  N ,  ( F `  q ) ,  0 ) )
17 1arithlem4.5 . . . . . . . . 9  |-  ( (
ph  /\  ( q  e.  Prime  /\  N  <_  q ) )  ->  ( F `  q )  =  0 )
1817anassrs 400 . . . . . . . 8  |-  ( ( ( ph  /\  q  e.  Prime )  /\  N  <_  q )  ->  ( F `  q )  =  0 )
1918ifeq2d 3594 . . . . . . 7  |-  ( ( ( ph  /\  q  e.  Prime )  /\  N  <_  q )  ->  if ( q  <_  N ,  ( F `  q ) ,  ( F `  q ) )  =  if ( q  <_  N , 
( F `  q
) ,  0 ) )
20 prmz 12508 . . . . . . . . . . 11  |-  ( q  e.  Prime  ->  q  e.  ZZ )
2120adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  Prime )  ->  q  e.  ZZ )
2213nnzd 9514 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  Prime )  ->  N  e.  ZZ )
23 zdcle 9469 . . . . . . . . . 10  |-  ( ( q  e.  ZZ  /\  N  e.  ZZ )  -> DECID  q  <_  N )
2421, 22, 23syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  q  e.  Prime )  -> DECID  q  <_  N )
25 ifiddc 3611 . . . . . . . . 9  |-  (DECID  q  <_  N  ->  if ( q  <_  N ,  ( F `  q ) ,  ( F `  q ) )  =  ( F `  q
) )
2624, 25syl 14 . . . . . . . 8  |-  ( (
ph  /\  q  e.  Prime )  ->  if (
q  <_  N , 
( F `  q
) ,  ( F `
 q ) )  =  ( F `  q ) )
2726adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  q  e.  Prime )  /\  N  <_  q )  ->  if ( q  <_  N ,  ( F `  q ) ,  ( F `  q ) )  =  ( F `
 q ) )
2819, 27eqtr3d 2241 . . . . . 6  |-  ( ( ( ph  /\  q  e.  Prime )  /\  N  <_  q )  ->  if ( q  <_  N ,  ( F `  q ) ,  0 )  =  ( F `
 q ) )
29 iftrue 3580 . . . . . . 7  |-  ( q  <_  N  ->  if ( q  <_  N ,  ( F `  q ) ,  0 )  =  ( F `
 q ) )
3029adantl 277 . . . . . 6  |-  ( ( ( ph  /\  q  e.  Prime )  /\  q  <_  N )  ->  if ( q  <_  N ,  ( F `  q ) ,  0 )  =  ( F `
 q ) )
31 zletric 9436 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  q  e.  ZZ )  ->  ( N  <_  q  \/  q  <_  N ) )
3222, 21, 31syl2anc 411 . . . . . 6  |-  ( (
ph  /\  q  e.  Prime )  ->  ( N  <_  q  \/  q  <_  N ) )
3328, 30, 32mpjaodan 800 . . . . 5  |-  ( (
ph  /\  q  e.  Prime )  ->  if (
q  <_  N , 
( F `  q
) ,  0 )  =  ( F `  q ) )
3411, 16, 333eqtrrd 2244 . . . 4  |-  ( (
ph  /\  q  e.  Prime )  ->  ( F `  q )  =  ( ( M `  (  seq 1 (  x.  ,  G ) `  N
) ) `  q
) )
3534ralrimiva 2580 . . 3  |-  ( ph  ->  A. q  e.  Prime  ( F `  q )  =  ( ( M `
 (  seq 1
(  x.  ,  G
) `  N )
) `  q )
)
3691arithlem3 12763 . . . . 5  |-  ( (  seq 1 (  x.  ,  G ) `  N )  e.  NN  ->  ( M `  (  seq 1 (  x.  ,  G ) `  N
) ) : Prime --> NN0 )
378, 36syl 14 . . . 4  |-  ( ph  ->  ( M `  (  seq 1 (  x.  ,  G ) `  N
) ) : Prime --> NN0 )
38 ffn 5435 . . . . 5  |-  ( F : Prime --> NN0  ->  F  Fn  Prime )
39 ffn 5435 . . . . 5  |-  ( ( M `  (  seq 1 (  x.  ,  G ) `  N
) ) : Prime --> NN0 
->  ( M `  (  seq 1 (  x.  ,  G ) `  N
) )  Fn  Prime )
40 eqfnfv 5690 . . . . 5  |-  ( ( F  Fn  Prime  /\  ( M `  (  seq 1 (  x.  ,  G ) `  N
) )  Fn  Prime )  ->  ( F  =  ( M `  (  seq 1 (  x.  ,  G ) `  N
) )  <->  A. q  e.  Prime  ( F `  q )  =  ( ( M `  (  seq 1 (  x.  ,  G ) `  N
) ) `  q
) ) )
4138, 39, 40syl2an 289 . . . 4  |-  ( ( F : Prime --> NN0  /\  ( M `  (  seq 1 (  x.  ,  G ) `  N
) ) : Prime --> NN0 )  ->  ( F  =  ( M `  (  seq 1 (  x.  ,  G ) `  N ) )  <->  A. q  e.  Prime  ( F `  q )  =  ( ( M `  (  seq 1 (  x.  ,  G ) `  N
) ) `  q
) ) )
422, 37, 41syl2anc 411 . . 3  |-  ( ph  ->  ( F  =  ( M `  (  seq 1 (  x.  ,  G ) `  N
) )  <->  A. q  e.  Prime  ( F `  q )  =  ( ( M `  (  seq 1 (  x.  ,  G ) `  N
) ) `  q
) ) )
4335, 42mpbird 167 . 2  |-  ( ph  ->  F  =  ( M `
 (  seq 1
(  x.  ,  G
) `  N )
) )
44 fveq2 5589 . . 3  |-  ( x  =  (  seq 1
(  x.  ,  G
) `  N )  ->  ( M `  x
)  =  ( M `
 (  seq 1
(  x.  ,  G
) `  N )
) )
4544rspceeqv 2899 . 2  |-  ( ( (  seq 1 (  x.  ,  G ) `
 N )  e.  NN  /\  F  =  ( M `  (  seq 1 (  x.  ,  G ) `  N
) ) )  ->  E. x  e.  NN  F  =  ( M `  x ) )
468, 43, 45syl2anc 411 1  |-  ( ph  ->  E. x  e.  NN  F  =  ( M `  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    = wceq 1373    e. wcel 2177   A.wral 2485   E.wrex 2486   ifcif 3575   class class class wbr 4051    |-> cmpt 4113    Fn wfn 5275   -->wf 5276   ` cfv 5280  (class class class)co 5957   0cc0 7945   1c1 7946    x. cmul 7950    <_ cle 8128   NNcn 9056   NN0cn0 9315   ZZcz 9392    seqcseq 10614   ^cexp 10705   Primecprime 12504    pCnt cpc 12682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-isom 5289  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-1o 6515  df-2o 6516  df-er 6633  df-en 6841  df-fin 6843  df-sup 7101  df-inf 7102  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-n0 9316  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-fz 10151  df-fzo 10285  df-fl 10435  df-mod 10490  df-seqfrec 10615  df-exp 10706  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385  df-dvds 12174  df-gcd 12350  df-prm 12505  df-pc 12683
This theorem is referenced by:  1arith  12765
  Copyright terms: Public domain W3C validator