| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exp3val | Unicode version | ||
| Description: Value of exponentiation to integer powers. (Contributed by Jim Kingdon, 7-Jun-2020.) |
| Ref | Expression |
|---|---|
| exp3val |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1cnd 8087 |
. . 3
| |
| 2 | simp1 999 |
. . . . . . 7
| |
| 3 | nnuz 9683 |
. . . . . . . 8
| |
| 4 | 1zzd 9398 |
. . . . . . . 8
| |
| 5 | fvconst2g 5797 |
. . . . . . . . 9
| |
| 6 | simpl 109 |
. . . . . . . . 9
| |
| 7 | 5, 6 | eqeltrd 2281 |
. . . . . . . 8
|
| 8 | mulcl 8051 |
. . . . . . . . 9
| |
| 9 | 8 | adantl 277 |
. . . . . . . 8
|
| 10 | 3, 4, 7, 9 | seqf 10607 |
. . . . . . 7
|
| 11 | 2, 10 | syl 14 |
. . . . . 6
|
| 12 | 11 | ad2antrr 488 |
. . . . 5
|
| 13 | simp2 1000 |
. . . . . . 7
| |
| 14 | 13 | ad2antrr 488 |
. . . . . 6
|
| 15 | simpr 110 |
. . . . . 6
| |
| 16 | elnnz 9381 |
. . . . . 6
| |
| 17 | 14, 15, 16 | sylanbrc 417 |
. . . . 5
|
| 18 | 12, 17 | ffvelcdmd 5715 |
. . . 4
|
| 19 | 11 | ad2antrr 488 |
. . . . . 6
|
| 20 | 13 | ad2antrr 488 |
. . . . . . . 8
|
| 21 | 20 | znegcld 9496 |
. . . . . . 7
|
| 22 | simpr 110 |
. . . . . . . . . . 11
| |
| 23 | simplr 528 |
. . . . . . . . . . . 12
| |
| 24 | eqcom 2206 |
. . . . . . . . . . . 12
| |
| 25 | 23, 24 | sylnib 677 |
. . . . . . . . . . 11
|
| 26 | ioran 753 |
. . . . . . . . . . 11
| |
| 27 | 22, 25, 26 | sylanbrc 417 |
. . . . . . . . . 10
|
| 28 | 0zd 9383 |
. . . . . . . . . . 11
| |
| 29 | zleloe 9418 |
. . . . . . . . . . 11
| |
| 30 | 28, 20, 29 | syl2anc 411 |
. . . . . . . . . 10
|
| 31 | 27, 30 | mtbird 674 |
. . . . . . . . 9
|
| 32 | zltnle 9417 |
. . . . . . . . . 10
| |
| 33 | 20, 28, 32 | syl2anc 411 |
. . . . . . . . 9
|
| 34 | 31, 33 | mpbird 167 |
. . . . . . . 8
|
| 35 | 20 | zred 9494 |
. . . . . . . . 9
|
| 36 | 35 | lt0neg1d 8587 |
. . . . . . . 8
|
| 37 | 34, 36 | mpbid 147 |
. . . . . . 7
|
| 38 | elnnz 9381 |
. . . . . . 7
| |
| 39 | 21, 37, 38 | sylanbrc 417 |
. . . . . 6
|
| 40 | 19, 39 | ffvelcdmd 5715 |
. . . . 5
|
| 41 | 2 | ad2antrr 488 |
. . . . . 6
|
| 42 | simpll3 1040 |
. . . . . . 7
| |
| 43 | 31, 42 | ecased 1361 |
. . . . . 6
|
| 44 | 41, 43, 39 | exp3vallem 10683 |
. . . . 5
|
| 45 | 40, 44 | recclapd 8853 |
. . . 4
|
| 46 | 0zd 9383 |
. . . . 5
| |
| 47 | simpl2 1003 |
. . . . 5
| |
| 48 | zdclt 9449 |
. . . . 5
| |
| 49 | 46, 47, 48 | syl2anc 411 |
. . . 4
|
| 50 | 18, 45, 49 | ifcldadc 3599 |
. . 3
|
| 51 | 0zd 9383 |
. . . 4
| |
| 52 | zdceq 9447 |
. . . 4
| |
| 53 | 13, 51, 52 | syl2anc 411 |
. . 3
|
| 54 | 1, 50, 53 | ifcldadc 3599 |
. 2
|
| 55 | sneq 3643 |
. . . . . . . 8
| |
| 56 | 55 | xpeq2d 4698 |
. . . . . . 7
|
| 57 | 56 | seqeq3d 10598 |
. . . . . 6
|
| 58 | 57 | fveq1d 5577 |
. . . . 5
|
| 59 | 57 | fveq1d 5577 |
. . . . . 6
|
| 60 | 59 | oveq2d 5959 |
. . . . 5
|
| 61 | 58, 60 | ifeq12d 3589 |
. . . 4
|
| 62 | 61 | ifeq2d 3588 |
. . 3
|
| 63 | eqeq1 2211 |
. . . 4
| |
| 64 | breq2 4047 |
. . . . 5
| |
| 65 | fveq2 5575 |
. . . . 5
| |
| 66 | negeq 8264 |
. . . . . . 7
| |
| 67 | 66 | fveq2d 5579 |
. . . . . 6
|
| 68 | 67 | oveq2d 5959 |
. . . . 5
|
| 69 | 64, 65, 68 | ifbieq12d 3596 |
. . . 4
|
| 70 | 63, 69 | ifbieq2d 3594 |
. . 3
|
| 71 | df-exp 10682 |
. . 3
| |
| 72 | 62, 70, 71 | ovmpog 6079 |
. 2
|
| 73 | 54, 72 | syld3an3 1294 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-frec 6476 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-n0 9295 df-z 9372 df-uz 9648 df-seqfrec 10591 df-exp 10682 |
| This theorem is referenced by: expnnval 10685 exp0 10686 expnegap0 10690 |
| Copyright terms: Public domain | W3C validator |