ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp3val Unicode version

Theorem exp3val 10615
Description: Value of exponentiation to integer powers. (Contributed by Jim Kingdon, 7-Jun-2020.)
Assertion
Ref Expression
exp3val  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  -> 
( A ^ N
)  =  if ( N  =  0 ,  1 ,  if ( 0  <  N , 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) ) )

Proof of Theorem exp3val
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1cnd 8037 . . 3  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  N  =  0 )  ->  1  e.  CC )
2 simp1 999 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  ->  A  e.  CC )
3 nnuz 9631 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
4 1zzd 9347 . . . . . . . 8  |-  ( A  e.  CC  ->  1  e.  ZZ )
5 fvconst2g 5773 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  x  e.  NN )  ->  ( ( NN  X.  { A } ) `  x )  =  A )
6 simpl 109 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  x  e.  NN )  ->  A  e.  CC )
75, 6eqeltrd 2270 . . . . . . . 8  |-  ( ( A  e.  CC  /\  x  e.  NN )  ->  ( ( NN  X.  { A } ) `  x )  e.  CC )
8 mulcl 8001 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
98adantl 277 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( x  x.  y )  e.  CC )
103, 4, 7, 9seqf 10538 . . . . . . 7  |-  ( A  e.  CC  ->  seq 1 (  x.  , 
( NN  X.  { A } ) ) : NN --> CC )
112, 10syl 14 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  ->  seq 1 (  x.  , 
( NN  X.  { A } ) ) : NN --> CC )
1211ad2antrr 488 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  0  <  N )  ->  seq 1
(  x.  ,  ( NN  X.  { A } ) ) : NN --> CC )
13 simp2 1000 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  ->  N  e.  ZZ )
1413ad2antrr 488 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  0  <  N )  ->  N  e.  ZZ )
15 simpr 110 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  0  <  N )  ->  0  <  N )
16 elnnz 9330 . . . . . 6  |-  ( N  e.  NN  <->  ( N  e.  ZZ  /\  0  < 
N ) )
1714, 15, 16sylanbrc 417 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  0  <  N )  ->  N  e.  NN )
1812, 17ffvelcdmd 5695 . . . 4  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  0  <  N )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  N )  e.  CC )
1911ad2antrr 488 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  seq 1 (  x.  , 
( NN  X.  { A } ) ) : NN --> CC )
2013ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  N  e.  ZZ )
2120znegcld 9444 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -u N  e.  ZZ )
22 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -.  0  <  N )
23 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -.  N  =  0 )
24 eqcom 2195 . . . . . . . . . . . 12  |-  ( N  =  0  <->  0  =  N )
2523, 24sylnib 677 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -.  0  =  N )
26 ioran 753 . . . . . . . . . . 11  |-  ( -.  ( 0  <  N  \/  0  =  N
)  <->  ( -.  0  <  N  /\  -.  0  =  N ) )
2722, 25, 26sylanbrc 417 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -.  ( 0  <  N  \/  0  =  N
) )
28 0zd 9332 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  0  e.  ZZ )
29 zleloe 9367 . . . . . . . . . . 11  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  <_  N  <->  ( 0  <  N  \/  0  =  N )
) )
3028, 20, 29syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  (
0  <_  N  <->  ( 0  <  N  \/  0  =  N ) ) )
3127, 30mtbird 674 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -.  0  <_  N )
32 zltnle 9366 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  ->  ( N  <  0  <->  -.  0  <_  N )
)
3320, 28, 32syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  ( N  <  0  <->  -.  0  <_  N ) )
3431, 33mpbird 167 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  N  <  0 )
3520zred 9442 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  N  e.  RR )
3635lt0neg1d 8536 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  ( N  <  0  <->  0  <  -u N ) )
3734, 36mpbid 147 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  0  <  -u N )
38 elnnz 9330 . . . . . . 7  |-  ( -u N  e.  NN  <->  ( -u N  e.  ZZ  /\  0  <  -u N ) )
3921, 37, 38sylanbrc 417 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -u N  e.  NN )
4019, 39ffvelcdmd 5695 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N )  e.  CC )
412ad2antrr 488 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  A  e.  CC )
42 simpll3 1040 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  ( A #  0  \/  0  <_  N ) )
4331, 42ecased 1360 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  A #  0 )
4441, 43, 39exp3vallem 10614 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) #  0 )
4540, 44recclapd 8802 . . . 4  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  (
1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) )  e.  CC )
46 0zd 9332 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0 )  ->  0  e.  ZZ )
47 simpl2 1003 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0 )  ->  N  e.  ZZ )
48 zdclt 9397 . . . . 5  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  -> DECID  0  <  N )
4946, 47, 48syl2anc 411 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0 )  -> DECID  0  <  N )
5018, 45, 49ifcldadc 3587 . . 3  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0 )  ->  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) )  e.  CC )
51 0zd 9332 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  -> 
0  e.  ZZ )
52 zdceq 9395 . . . 4  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
5313, 51, 52syl2anc 411 . . 3  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  -> DECID  N  =  0 )
541, 50, 53ifcldadc 3587 . 2  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  ->  if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) )  e.  CC )
55 sneq 3630 . . . . . . . 8  |-  ( x  =  A  ->  { x }  =  { A } )
5655xpeq2d 4684 . . . . . . 7  |-  ( x  =  A  ->  ( NN  X.  { x }
)  =  ( NN 
X.  { A }
) )
5756seqeq3d 10529 . . . . . 6  |-  ( x  =  A  ->  seq 1 (  x.  , 
( NN  X.  {
x } ) )  =  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) )
5857fveq1d 5557 . . . . 5  |-  ( x  =  A  ->  (  seq 1 (  x.  , 
( NN  X.  {
x } ) ) `
 y )  =  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  y
) )
5957fveq1d 5557 . . . . . 6  |-  ( x  =  A  ->  (  seq 1 (  x.  , 
( NN  X.  {
x } ) ) `
 -u y )  =  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  -u y
) )
6059oveq2d 5935 . . . . 5  |-  ( x  =  A  ->  (
1  /  (  seq 1 (  x.  , 
( NN  X.  {
x } ) ) `
 -u y ) )  =  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 -u y ) ) )
6158, 60ifeq12d 3577 . . . 4  |-  ( x  =  A  ->  if ( 0  <  y ,  (  seq 1
(  x.  ,  ( NN  X.  { x } ) ) `  y ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  {
x } ) ) `
 -u y ) ) )  =  if ( 0  <  y ,  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  y
) ,  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  -u y ) ) ) )
6261ifeq2d 3576 . . 3  |-  ( x  =  A  ->  if ( y  =  0 ,  1 ,  if ( 0  <  y ,  (  seq 1
(  x.  ,  ( NN  X.  { x } ) ) `  y ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  {
x } ) ) `
 -u y ) ) ) )  =  if ( y  =  0 ,  1 ,  if ( 0  <  y ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  y ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u y ) ) ) ) )
63 eqeq1 2200 . . . 4  |-  ( y  =  N  ->  (
y  =  0  <->  N  =  0 ) )
64 breq2 4034 . . . . 5  |-  ( y  =  N  ->  (
0  <  y  <->  0  <  N ) )
65 fveq2 5555 . . . . 5  |-  ( y  =  N  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  y )  =  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) )
66 negeq 8214 . . . . . . 7  |-  ( y  =  N  ->  -u y  =  -u N )
6766fveq2d 5559 . . . . . 6  |-  ( y  =  N  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u y )  =  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 -u N ) )
6867oveq2d 5935 . . . . 5  |-  ( y  =  N  ->  (
1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u y ) )  =  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) )
6964, 65, 68ifbieq12d 3584 . . . 4  |-  ( y  =  N  ->  if ( 0  <  y ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  y ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u y ) ) )  =  if ( 0  <  N ,  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) )
7063, 69ifbieq2d 3582 . . 3  |-  ( y  =  N  ->  if ( y  =  0 ,  1 ,  if ( 0  <  y ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  y ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u y ) ) ) )  =  if ( N  =  0 ,  1 ,  if ( 0  <  N , 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) ) )
71 df-exp 10613 . . 3  |-  ^  =  ( x  e.  CC ,  y  e.  ZZ  |->  if ( y  =  0 ,  1 ,  if ( 0  <  y ,  (  seq 1
(  x.  ,  ( NN  X.  { x } ) ) `  y ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  {
x } ) ) `
 -u y ) ) ) ) )
7262, 70, 71ovmpog 6054 . 2  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) )  e.  CC )  ->  ( A ^ N )  =  if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) ) )
7354, 72syld3an3 1294 1  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  -> 
( A ^ N
)  =  if ( N  =  0 ,  1 ,  if ( 0  <  N , 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2164   ifcif 3558   {csn 3619   class class class wbr 4030    X. cxp 4658   -->wf 5251   ` cfv 5255  (class class class)co 5919   CCcc 7872   0cc0 7874   1c1 7875    x. cmul 7879    < clt 8056    <_ cle 8057   -ucneg 8193   # cap 8602    / cdiv 8693   NNcn 8984   ZZcz 9320    seqcseq 10521   ^cexp 10612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-seqfrec 10522  df-exp 10613
This theorem is referenced by:  expnnval  10616  exp0  10617  expnegap0  10621
  Copyright terms: Public domain W3C validator