ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp3val Unicode version

Theorem exp3val 10667
Description: Value of exponentiation to integer powers. (Contributed by Jim Kingdon, 7-Jun-2020.)
Assertion
Ref Expression
exp3val  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  -> 
( A ^ N
)  =  if ( N  =  0 ,  1 ,  if ( 0  <  N , 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) ) )

Proof of Theorem exp3val
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1cnd 8070 . . 3  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  N  =  0 )  ->  1  e.  CC )
2 simp1 999 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  ->  A  e.  CC )
3 nnuz 9666 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
4 1zzd 9381 . . . . . . . 8  |-  ( A  e.  CC  ->  1  e.  ZZ )
5 fvconst2g 5788 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  x  e.  NN )  ->  ( ( NN  X.  { A } ) `  x )  =  A )
6 simpl 109 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  x  e.  NN )  ->  A  e.  CC )
75, 6eqeltrd 2281 . . . . . . . 8  |-  ( ( A  e.  CC  /\  x  e.  NN )  ->  ( ( NN  X.  { A } ) `  x )  e.  CC )
8 mulcl 8034 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
98adantl 277 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( x  x.  y )  e.  CC )
103, 4, 7, 9seqf 10590 . . . . . . 7  |-  ( A  e.  CC  ->  seq 1 (  x.  , 
( NN  X.  { A } ) ) : NN --> CC )
112, 10syl 14 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  ->  seq 1 (  x.  , 
( NN  X.  { A } ) ) : NN --> CC )
1211ad2antrr 488 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  0  <  N )  ->  seq 1
(  x.  ,  ( NN  X.  { A } ) ) : NN --> CC )
13 simp2 1000 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  ->  N  e.  ZZ )
1413ad2antrr 488 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  0  <  N )  ->  N  e.  ZZ )
15 simpr 110 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  0  <  N )  ->  0  <  N )
16 elnnz 9364 . . . . . 6  |-  ( N  e.  NN  <->  ( N  e.  ZZ  /\  0  < 
N ) )
1714, 15, 16sylanbrc 417 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  0  <  N )  ->  N  e.  NN )
1812, 17ffvelcdmd 5710 . . . 4  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  0  <  N )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  N )  e.  CC )
1911ad2antrr 488 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  seq 1 (  x.  , 
( NN  X.  { A } ) ) : NN --> CC )
2013ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  N  e.  ZZ )
2120znegcld 9479 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -u N  e.  ZZ )
22 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -.  0  <  N )
23 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -.  N  =  0 )
24 eqcom 2206 . . . . . . . . . . . 12  |-  ( N  =  0  <->  0  =  N )
2523, 24sylnib 677 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -.  0  =  N )
26 ioran 753 . . . . . . . . . . 11  |-  ( -.  ( 0  <  N  \/  0  =  N
)  <->  ( -.  0  <  N  /\  -.  0  =  N ) )
2722, 25, 26sylanbrc 417 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -.  ( 0  <  N  \/  0  =  N
) )
28 0zd 9366 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  0  e.  ZZ )
29 zleloe 9401 . . . . . . . . . . 11  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  <_  N  <->  ( 0  <  N  \/  0  =  N )
) )
3028, 20, 29syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  (
0  <_  N  <->  ( 0  <  N  \/  0  =  N ) ) )
3127, 30mtbird 674 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -.  0  <_  N )
32 zltnle 9400 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  ->  ( N  <  0  <->  -.  0  <_  N )
)
3320, 28, 32syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  ( N  <  0  <->  -.  0  <_  N ) )
3431, 33mpbird 167 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  N  <  0 )
3520zred 9477 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  N  e.  RR )
3635lt0neg1d 8570 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  ( N  <  0  <->  0  <  -u N ) )
3734, 36mpbid 147 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  0  <  -u N )
38 elnnz 9364 . . . . . . 7  |-  ( -u N  e.  NN  <->  ( -u N  e.  ZZ  /\  0  <  -u N ) )
3921, 37, 38sylanbrc 417 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -u N  e.  NN )
4019, 39ffvelcdmd 5710 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N )  e.  CC )
412ad2antrr 488 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  A  e.  CC )
42 simpll3 1040 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  ( A #  0  \/  0  <_  N ) )
4331, 42ecased 1361 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  A #  0 )
4441, 43, 39exp3vallem 10666 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) #  0 )
4540, 44recclapd 8836 . . . 4  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  (
1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) )  e.  CC )
46 0zd 9366 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0 )  ->  0  e.  ZZ )
47 simpl2 1003 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0 )  ->  N  e.  ZZ )
48 zdclt 9432 . . . . 5  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  -> DECID  0  <  N )
4946, 47, 48syl2anc 411 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0 )  -> DECID  0  <  N )
5018, 45, 49ifcldadc 3599 . . 3  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0 )  ->  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) )  e.  CC )
51 0zd 9366 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  -> 
0  e.  ZZ )
52 zdceq 9430 . . . 4  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
5313, 51, 52syl2anc 411 . . 3  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  -> DECID  N  =  0 )
541, 50, 53ifcldadc 3599 . 2  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  ->  if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) )  e.  CC )
55 sneq 3643 . . . . . . . 8  |-  ( x  =  A  ->  { x }  =  { A } )
5655xpeq2d 4697 . . . . . . 7  |-  ( x  =  A  ->  ( NN  X.  { x }
)  =  ( NN 
X.  { A }
) )
5756seqeq3d 10581 . . . . . 6  |-  ( x  =  A  ->  seq 1 (  x.  , 
( NN  X.  {
x } ) )  =  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) )
5857fveq1d 5572 . . . . 5  |-  ( x  =  A  ->  (  seq 1 (  x.  , 
( NN  X.  {
x } ) ) `
 y )  =  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  y
) )
5957fveq1d 5572 . . . . . 6  |-  ( x  =  A  ->  (  seq 1 (  x.  , 
( NN  X.  {
x } ) ) `
 -u y )  =  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  -u y
) )
6059oveq2d 5950 . . . . 5  |-  ( x  =  A  ->  (
1  /  (  seq 1 (  x.  , 
( NN  X.  {
x } ) ) `
 -u y ) )  =  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 -u y ) ) )
6158, 60ifeq12d 3589 . . . 4  |-  ( x  =  A  ->  if ( 0  <  y ,  (  seq 1
(  x.  ,  ( NN  X.  { x } ) ) `  y ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  {
x } ) ) `
 -u y ) ) )  =  if ( 0  <  y ,  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  y
) ,  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  -u y ) ) ) )
6261ifeq2d 3588 . . 3  |-  ( x  =  A  ->  if ( y  =  0 ,  1 ,  if ( 0  <  y ,  (  seq 1
(  x.  ,  ( NN  X.  { x } ) ) `  y ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  {
x } ) ) `
 -u y ) ) ) )  =  if ( y  =  0 ,  1 ,  if ( 0  <  y ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  y ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u y ) ) ) ) )
63 eqeq1 2211 . . . 4  |-  ( y  =  N  ->  (
y  =  0  <->  N  =  0 ) )
64 breq2 4047 . . . . 5  |-  ( y  =  N  ->  (
0  <  y  <->  0  <  N ) )
65 fveq2 5570 . . . . 5  |-  ( y  =  N  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  y )  =  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) )
66 negeq 8247 . . . . . . 7  |-  ( y  =  N  ->  -u y  =  -u N )
6766fveq2d 5574 . . . . . 6  |-  ( y  =  N  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u y )  =  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 -u N ) )
6867oveq2d 5950 . . . . 5  |-  ( y  =  N  ->  (
1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u y ) )  =  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) )
6964, 65, 68ifbieq12d 3596 . . . 4  |-  ( y  =  N  ->  if ( 0  <  y ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  y ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u y ) ) )  =  if ( 0  <  N ,  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) )
7063, 69ifbieq2d 3594 . . 3  |-  ( y  =  N  ->  if ( y  =  0 ,  1 ,  if ( 0  <  y ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  y ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u y ) ) ) )  =  if ( N  =  0 ,  1 ,  if ( 0  <  N , 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) ) )
71 df-exp 10665 . . 3  |-  ^  =  ( x  e.  CC ,  y  e.  ZZ  |->  if ( y  =  0 ,  1 ,  if ( 0  <  y ,  (  seq 1
(  x.  ,  ( NN  X.  { x } ) ) `  y ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  {
x } ) ) `
 -u y ) ) ) ) )
7262, 70, 71ovmpog 6070 . 2  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) )  e.  CC )  ->  ( A ^ N )  =  if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) ) )
7354, 72syld3an3 1294 1  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  -> 
( A ^ N
)  =  if ( N  =  0 ,  1 ,  if ( 0  <  N , 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1372    e. wcel 2175   ifcif 3570   {csn 3632   class class class wbr 4043    X. cxp 4671   -->wf 5264   ` cfv 5268  (class class class)co 5934   CCcc 7905   0cc0 7907   1c1 7908    x. cmul 7912    < clt 8089    <_ cle 8090   -ucneg 8226   # cap 8636    / cdiv 8727   NNcn 9018   ZZcz 9354    seqcseq 10573   ^cexp 10664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-n0 9278  df-z 9355  df-uz 9631  df-seqfrec 10574  df-exp 10665
This theorem is referenced by:  expnnval  10668  exp0  10669  expnegap0  10673
  Copyright terms: Public domain W3C validator