| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exp3val | Unicode version | ||
| Description: Value of exponentiation to integer powers. (Contributed by Jim Kingdon, 7-Jun-2020.) |
| Ref | Expression |
|---|---|
| exp3val |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1cnd 8108 |
. . 3
| |
| 2 | simp1 1000 |
. . . . . . 7
| |
| 3 | nnuz 9704 |
. . . . . . . 8
| |
| 4 | 1zzd 9419 |
. . . . . . . 8
| |
| 5 | fvconst2g 5811 |
. . . . . . . . 9
| |
| 6 | simpl 109 |
. . . . . . . . 9
| |
| 7 | 5, 6 | eqeltrd 2283 |
. . . . . . . 8
|
| 8 | mulcl 8072 |
. . . . . . . . 9
| |
| 9 | 8 | adantl 277 |
. . . . . . . 8
|
| 10 | 3, 4, 7, 9 | seqf 10631 |
. . . . . . 7
|
| 11 | 2, 10 | syl 14 |
. . . . . 6
|
| 12 | 11 | ad2antrr 488 |
. . . . 5
|
| 13 | simp2 1001 |
. . . . . . 7
| |
| 14 | 13 | ad2antrr 488 |
. . . . . 6
|
| 15 | simpr 110 |
. . . . . 6
| |
| 16 | elnnz 9402 |
. . . . . 6
| |
| 17 | 14, 15, 16 | sylanbrc 417 |
. . . . 5
|
| 18 | 12, 17 | ffvelcdmd 5729 |
. . . 4
|
| 19 | 11 | ad2antrr 488 |
. . . . . 6
|
| 20 | 13 | ad2antrr 488 |
. . . . . . . 8
|
| 21 | 20 | znegcld 9517 |
. . . . . . 7
|
| 22 | simpr 110 |
. . . . . . . . . . 11
| |
| 23 | simplr 528 |
. . . . . . . . . . . 12
| |
| 24 | eqcom 2208 |
. . . . . . . . . . . 12
| |
| 25 | 23, 24 | sylnib 678 |
. . . . . . . . . . 11
|
| 26 | ioran 754 |
. . . . . . . . . . 11
| |
| 27 | 22, 25, 26 | sylanbrc 417 |
. . . . . . . . . 10
|
| 28 | 0zd 9404 |
. . . . . . . . . . 11
| |
| 29 | zleloe 9439 |
. . . . . . . . . . 11
| |
| 30 | 28, 20, 29 | syl2anc 411 |
. . . . . . . . . 10
|
| 31 | 27, 30 | mtbird 675 |
. . . . . . . . 9
|
| 32 | zltnle 9438 |
. . . . . . . . . 10
| |
| 33 | 20, 28, 32 | syl2anc 411 |
. . . . . . . . 9
|
| 34 | 31, 33 | mpbird 167 |
. . . . . . . 8
|
| 35 | 20 | zred 9515 |
. . . . . . . . 9
|
| 36 | 35 | lt0neg1d 8608 |
. . . . . . . 8
|
| 37 | 34, 36 | mpbid 147 |
. . . . . . 7
|
| 38 | elnnz 9402 |
. . . . . . 7
| |
| 39 | 21, 37, 38 | sylanbrc 417 |
. . . . . 6
|
| 40 | 19, 39 | ffvelcdmd 5729 |
. . . . 5
|
| 41 | 2 | ad2antrr 488 |
. . . . . 6
|
| 42 | simpll3 1041 |
. . . . . . 7
| |
| 43 | 31, 42 | ecased 1362 |
. . . . . 6
|
| 44 | 41, 43, 39 | exp3vallem 10707 |
. . . . 5
|
| 45 | 40, 44 | recclapd 8874 |
. . . 4
|
| 46 | 0zd 9404 |
. . . . 5
| |
| 47 | simpl2 1004 |
. . . . 5
| |
| 48 | zdclt 9470 |
. . . . 5
| |
| 49 | 46, 47, 48 | syl2anc 411 |
. . . 4
|
| 50 | 18, 45, 49 | ifcldadc 3605 |
. . 3
|
| 51 | 0zd 9404 |
. . . 4
| |
| 52 | zdceq 9468 |
. . . 4
| |
| 53 | 13, 51, 52 | syl2anc 411 |
. . 3
|
| 54 | 1, 50, 53 | ifcldadc 3605 |
. 2
|
| 55 | sneq 3649 |
. . . . . . . 8
| |
| 56 | 55 | xpeq2d 4707 |
. . . . . . 7
|
| 57 | 56 | seqeq3d 10622 |
. . . . . 6
|
| 58 | 57 | fveq1d 5591 |
. . . . 5
|
| 59 | 57 | fveq1d 5591 |
. . . . . 6
|
| 60 | 59 | oveq2d 5973 |
. . . . 5
|
| 61 | 58, 60 | ifeq12d 3595 |
. . . 4
|
| 62 | 61 | ifeq2d 3594 |
. . 3
|
| 63 | eqeq1 2213 |
. . . 4
| |
| 64 | breq2 4055 |
. . . . 5
| |
| 65 | fveq2 5589 |
. . . . 5
| |
| 66 | negeq 8285 |
. . . . . . 7
| |
| 67 | 66 | fveq2d 5593 |
. . . . . 6
|
| 68 | 67 | oveq2d 5973 |
. . . . 5
|
| 69 | 64, 65, 68 | ifbieq12d 3602 |
. . . 4
|
| 70 | 63, 69 | ifbieq2d 3600 |
. . 3
|
| 71 | df-exp 10706 |
. . 3
| |
| 72 | 62, 70, 71 | ovmpog 6093 |
. 2
|
| 73 | 54, 72 | syld3an3 1295 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-frec 6490 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-n0 9316 df-z 9393 df-uz 9669 df-seqfrec 10615 df-exp 10706 |
| This theorem is referenced by: expnnval 10709 exp0 10710 expnegap0 10714 |
| Copyright terms: Public domain | W3C validator |