ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp3val Unicode version

Theorem exp3val 10508
Description: Value of exponentiation to integer powers. (Contributed by Jim Kingdon, 7-Jun-2020.)
Assertion
Ref Expression
exp3val  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  -> 
( A ^ N
)  =  if ( N  =  0 ,  1 ,  if ( 0  <  N , 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) ) )

Proof of Theorem exp3val
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1cnd 7964 . . 3  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  N  =  0 )  ->  1  e.  CC )
2 simp1 997 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  ->  A  e.  CC )
3 nnuz 9552 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
4 1zzd 9269 . . . . . . . 8  |-  ( A  e.  CC  ->  1  e.  ZZ )
5 fvconst2g 5726 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  x  e.  NN )  ->  ( ( NN  X.  { A } ) `  x )  =  A )
6 simpl 109 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  x  e.  NN )  ->  A  e.  CC )
75, 6eqeltrd 2254 . . . . . . . 8  |-  ( ( A  e.  CC  /\  x  e.  NN )  ->  ( ( NN  X.  { A } ) `  x )  e.  CC )
8 mulcl 7929 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
98adantl 277 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( x  x.  y )  e.  CC )
103, 4, 7, 9seqf 10447 . . . . . . 7  |-  ( A  e.  CC  ->  seq 1 (  x.  , 
( NN  X.  { A } ) ) : NN --> CC )
112, 10syl 14 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  ->  seq 1 (  x.  , 
( NN  X.  { A } ) ) : NN --> CC )
1211ad2antrr 488 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  0  <  N )  ->  seq 1
(  x.  ,  ( NN  X.  { A } ) ) : NN --> CC )
13 simp2 998 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  ->  N  e.  ZZ )
1413ad2antrr 488 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  0  <  N )  ->  N  e.  ZZ )
15 simpr 110 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  0  <  N )  ->  0  <  N )
16 elnnz 9252 . . . . . 6  |-  ( N  e.  NN  <->  ( N  e.  ZZ  /\  0  < 
N ) )
1714, 15, 16sylanbrc 417 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  0  <  N )  ->  N  e.  NN )
1812, 17ffvelcdmd 5648 . . . 4  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  0  <  N )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  N )  e.  CC )
1911ad2antrr 488 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  seq 1 (  x.  , 
( NN  X.  { A } ) ) : NN --> CC )
2013ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  N  e.  ZZ )
2120znegcld 9366 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -u N  e.  ZZ )
22 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -.  0  <  N )
23 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -.  N  =  0 )
24 eqcom 2179 . . . . . . . . . . . 12  |-  ( N  =  0  <->  0  =  N )
2523, 24sylnib 676 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -.  0  =  N )
26 ioran 752 . . . . . . . . . . 11  |-  ( -.  ( 0  <  N  \/  0  =  N
)  <->  ( -.  0  <  N  /\  -.  0  =  N ) )
2722, 25, 26sylanbrc 417 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -.  ( 0  <  N  \/  0  =  N
) )
28 0zd 9254 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  0  e.  ZZ )
29 zleloe 9289 . . . . . . . . . . 11  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  <_  N  <->  ( 0  <  N  \/  0  =  N )
) )
3028, 20, 29syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  (
0  <_  N  <->  ( 0  <  N  \/  0  =  N ) ) )
3127, 30mtbird 673 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -.  0  <_  N )
32 zltnle 9288 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  ->  ( N  <  0  <->  -.  0  <_  N )
)
3320, 28, 32syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  ( N  <  0  <->  -.  0  <_  N ) )
3431, 33mpbird 167 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  N  <  0 )
3520zred 9364 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  N  e.  RR )
3635lt0neg1d 8462 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  ( N  <  0  <->  0  <  -u N ) )
3734, 36mpbid 147 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  0  <  -u N )
38 elnnz 9252 . . . . . . 7  |-  ( -u N  e.  NN  <->  ( -u N  e.  ZZ  /\  0  <  -u N ) )
3921, 37, 38sylanbrc 417 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -u N  e.  NN )
4019, 39ffvelcdmd 5648 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N )  e.  CC )
412ad2antrr 488 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  A  e.  CC )
42 simpll3 1038 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  ( A #  0  \/  0  <_  N ) )
4331, 42ecased 1349 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  A #  0 )
4441, 43, 39exp3vallem 10507 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) #  0 )
4540, 44recclapd 8727 . . . 4  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  (
1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) )  e.  CC )
46 0zd 9254 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0 )  ->  0  e.  ZZ )
47 simpl2 1001 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0 )  ->  N  e.  ZZ )
48 zdclt 9319 . . . . 5  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  -> DECID  0  <  N )
4946, 47, 48syl2anc 411 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0 )  -> DECID  0  <  N )
5018, 45, 49ifcldadc 3563 . . 3  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0 )  ->  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) )  e.  CC )
51 0zd 9254 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  -> 
0  e.  ZZ )
52 zdceq 9317 . . . 4  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
5313, 51, 52syl2anc 411 . . 3  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  -> DECID  N  =  0 )
541, 50, 53ifcldadc 3563 . 2  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  ->  if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) )  e.  CC )
55 sneq 3602 . . . . . . . 8  |-  ( x  =  A  ->  { x }  =  { A } )
5655xpeq2d 4647 . . . . . . 7  |-  ( x  =  A  ->  ( NN  X.  { x }
)  =  ( NN 
X.  { A }
) )
5756seqeq3d 10439 . . . . . 6  |-  ( x  =  A  ->  seq 1 (  x.  , 
( NN  X.  {
x } ) )  =  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) )
5857fveq1d 5513 . . . . 5  |-  ( x  =  A  ->  (  seq 1 (  x.  , 
( NN  X.  {
x } ) ) `
 y )  =  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  y
) )
5957fveq1d 5513 . . . . . 6  |-  ( x  =  A  ->  (  seq 1 (  x.  , 
( NN  X.  {
x } ) ) `
 -u y )  =  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  -u y
) )
6059oveq2d 5885 . . . . 5  |-  ( x  =  A  ->  (
1  /  (  seq 1 (  x.  , 
( NN  X.  {
x } ) ) `
 -u y ) )  =  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 -u y ) ) )
6158, 60ifeq12d 3553 . . . 4  |-  ( x  =  A  ->  if ( 0  <  y ,  (  seq 1
(  x.  ,  ( NN  X.  { x } ) ) `  y ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  {
x } ) ) `
 -u y ) ) )  =  if ( 0  <  y ,  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  y
) ,  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  -u y ) ) ) )
6261ifeq2d 3552 . . 3  |-  ( x  =  A  ->  if ( y  =  0 ,  1 ,  if ( 0  <  y ,  (  seq 1
(  x.  ,  ( NN  X.  { x } ) ) `  y ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  {
x } ) ) `
 -u y ) ) ) )  =  if ( y  =  0 ,  1 ,  if ( 0  <  y ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  y ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u y ) ) ) ) )
63 eqeq1 2184 . . . 4  |-  ( y  =  N  ->  (
y  =  0  <->  N  =  0 ) )
64 breq2 4004 . . . . 5  |-  ( y  =  N  ->  (
0  <  y  <->  0  <  N ) )
65 fveq2 5511 . . . . 5  |-  ( y  =  N  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  y )  =  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) )
66 negeq 8140 . . . . . . 7  |-  ( y  =  N  ->  -u y  =  -u N )
6766fveq2d 5515 . . . . . 6  |-  ( y  =  N  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u y )  =  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 -u N ) )
6867oveq2d 5885 . . . . 5  |-  ( y  =  N  ->  (
1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u y ) )  =  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) )
6964, 65, 68ifbieq12d 3560 . . . 4  |-  ( y  =  N  ->  if ( 0  <  y ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  y ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u y ) ) )  =  if ( 0  <  N ,  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) )
7063, 69ifbieq2d 3558 . . 3  |-  ( y  =  N  ->  if ( y  =  0 ,  1 ,  if ( 0  <  y ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  y ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u y ) ) ) )  =  if ( N  =  0 ,  1 ,  if ( 0  <  N , 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) ) )
71 df-exp 10506 . . 3  |-  ^  =  ( x  e.  CC ,  y  e.  ZZ  |->  if ( y  =  0 ,  1 ,  if ( 0  <  y ,  (  seq 1
(  x.  ,  ( NN  X.  { x } ) ) `  y ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  {
x } ) ) `
 -u y ) ) ) ) )
7262, 70, 71ovmpog 6003 . 2  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) )  e.  CC )  ->  ( A ^ N )  =  if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) ) )
7354, 72syld3an3 1283 1  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  -> 
( A ^ N
)  =  if ( N  =  0 ,  1 ,  if ( 0  <  N , 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    /\ w3a 978    = wceq 1353    e. wcel 2148   ifcif 3534   {csn 3591   class class class wbr 4000    X. cxp 4621   -->wf 5208   ` cfv 5212  (class class class)co 5869   CCcc 7800   0cc0 7802   1c1 7803    x. cmul 7807    < clt 7982    <_ cle 7983   -ucneg 8119   # cap 8528    / cdiv 8618   NNcn 8908   ZZcz 9242    seqcseq 10431   ^cexp 10505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-seqfrec 10432  df-exp 10506
This theorem is referenced by:  expnnval  10509  exp0  10510  expnegap0  10514
  Copyright terms: Public domain W3C validator