| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isumz | Unicode version | ||
| Description: Any sum of zero over a summable set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 9-Apr-2023.) |
| Ref | Expression |
|---|---|
| isumz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 |
. . . 4
| |
| 2 | simp1 1021 |
. . . 4
| |
| 3 | simp2 1022 |
. . . 4
| |
| 4 | c0ex 8136 |
. . . . . . 7
| |
| 5 | 4 | fvconst2 5854 |
. . . . . 6
|
| 6 | 5 | adantl 277 |
. . . . 5
|
| 7 | eleq1w 2290 |
. . . . . . . 8
| |
| 8 | 7 | dcbid 843 |
. . . . . . 7
|
| 9 | simpl3 1026 |
. . . . . . 7
| |
| 10 | simpr 110 |
. . . . . . 7
| |
| 11 | 8, 9, 10 | rspcdva 2912 |
. . . . . 6
|
| 12 | ifiddc 3638 |
. . . . . 6
| |
| 13 | 11, 12 | syl 14 |
. . . . 5
|
| 14 | 6, 13 | eqtr4d 2265 |
. . . 4
|
| 15 | simp3 1023 |
. . . . 5
| |
| 16 | eleq1w 2290 |
. . . . . . 7
| |
| 17 | 16 | dcbid 843 |
. . . . . 6
|
| 18 | 17 | cbvralv 2765 |
. . . . 5
|
| 19 | 15, 18 | sylib 122 |
. . . 4
|
| 20 | 0cnd 8135 |
. . . 4
| |
| 21 | 1, 2, 3, 14, 19, 20 | zsumdc 11890 |
. . 3
|
| 22 | fclim 11800 |
. . . . 5
| |
| 23 | ffun 5475 |
. . . . 5
| |
| 24 | 22, 23 | ax-mp 5 |
. . . 4
|
| 25 | serclim0 11811 |
. . . . 5
| |
| 26 | 2, 25 | syl 14 |
. . . 4
|
| 27 | funbrfv 5669 |
. . . 4
| |
| 28 | 24, 26, 27 | mpsyl 65 |
. . 3
|
| 29 | 21, 28 | eqtrd 2262 |
. 2
|
| 30 | fz1f1o 11881 |
. . 3
| |
| 31 | sumeq1 11861 |
. . . . 5
| |
| 32 | sum0 11894 |
. . . . 5
| |
| 33 | 31, 32 | eqtrdi 2278 |
. . . 4
|
| 34 | eqidd 2230 |
. . . . . . . . 9
| |
| 35 | simpl 109 |
. . . . . . . . 9
| |
| 36 | simpr 110 |
. . . . . . . . 9
| |
| 37 | 0cnd 8135 |
. . . . . . . . 9
| |
| 38 | elfznn 10246 |
. . . . . . . . . . 11
| |
| 39 | 4 | fvconst2 5854 |
. . . . . . . . . . 11
|
| 40 | 38, 39 | syl 14 |
. . . . . . . . . 10
|
| 41 | 40 | adantl 277 |
. . . . . . . . 9
|
| 42 | 34, 35, 36, 37, 41 | fsum3 11893 |
. . . . . . . 8
|
| 43 | nnuz 9754 |
. . . . . . . . . . . . 13
| |
| 44 | 43 | fser0const 10752 |
. . . . . . . . . . . 12
|
| 45 | 44 | seqeq3d 10672 |
. . . . . . . . . . 11
|
| 46 | 45 | fveq1d 5628 |
. . . . . . . . . 10
|
| 47 | 43 | ser0 10750 |
. . . . . . . . . 10
|
| 48 | 46, 47 | eqtrd 2262 |
. . . . . . . . 9
|
| 49 | 35, 48 | syl 14 |
. . . . . . . 8
|
| 50 | 42, 49 | eqtrd 2262 |
. . . . . . 7
|
| 51 | 50 | ex 115 |
. . . . . 6
|
| 52 | 51 | exlimdv 1865 |
. . . . 5
|
| 53 | 52 | imp 124 |
. . . 4
|
| 54 | 33, 53 | jaoi 721 |
. . 3
|
| 55 | 30, 54 | syl 14 |
. 2
|
| 56 | 29, 55 | jaoi 721 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-frec 6535 df-1o 6560 df-oadd 6564 df-er 6678 df-en 6886 df-dom 6887 df-fin 6888 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 df-fz 10201 df-fzo 10335 df-seqfrec 10665 df-exp 10756 df-ihash 10993 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-clim 11785 df-sumdc 11860 |
| This theorem is referenced by: fsum00 11968 fsumdvds 12348 pcfac 12868 plymullem1 15416 nconstwlpolem0 16390 |
| Copyright terms: Public domain | W3C validator |