| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isumz | Unicode version | ||
| Description: Any sum of zero over a summable set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 9-Apr-2023.) |
| Ref | Expression |
|---|---|
| isumz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2207 |
. . . 4
| |
| 2 | simp1 1000 |
. . . 4
| |
| 3 | simp2 1001 |
. . . 4
| |
| 4 | c0ex 8101 |
. . . . . . 7
| |
| 5 | 4 | fvconst2 5823 |
. . . . . 6
|
| 6 | 5 | adantl 277 |
. . . . 5
|
| 7 | eleq1w 2268 |
. . . . . . . 8
| |
| 8 | 7 | dcbid 840 |
. . . . . . 7
|
| 9 | simpl3 1005 |
. . . . . . 7
| |
| 10 | simpr 110 |
. . . . . . 7
| |
| 11 | 8, 9, 10 | rspcdva 2889 |
. . . . . 6
|
| 12 | ifiddc 3615 |
. . . . . 6
| |
| 13 | 11, 12 | syl 14 |
. . . . 5
|
| 14 | 6, 13 | eqtr4d 2243 |
. . . 4
|
| 15 | simp3 1002 |
. . . . 5
| |
| 16 | eleq1w 2268 |
. . . . . . 7
| |
| 17 | 16 | dcbid 840 |
. . . . . 6
|
| 18 | 17 | cbvralv 2742 |
. . . . 5
|
| 19 | 15, 18 | sylib 122 |
. . . 4
|
| 20 | 0cnd 8100 |
. . . 4
| |
| 21 | 1, 2, 3, 14, 19, 20 | zsumdc 11810 |
. . 3
|
| 22 | fclim 11720 |
. . . . 5
| |
| 23 | ffun 5448 |
. . . . 5
| |
| 24 | 22, 23 | ax-mp 5 |
. . . 4
|
| 25 | serclim0 11731 |
. . . . 5
| |
| 26 | 2, 25 | syl 14 |
. . . 4
|
| 27 | funbrfv 5640 |
. . . 4
| |
| 28 | 24, 26, 27 | mpsyl 65 |
. . 3
|
| 29 | 21, 28 | eqtrd 2240 |
. 2
|
| 30 | fz1f1o 11801 |
. . 3
| |
| 31 | sumeq1 11781 |
. . . . 5
| |
| 32 | sum0 11814 |
. . . . 5
| |
| 33 | 31, 32 | eqtrdi 2256 |
. . . 4
|
| 34 | eqidd 2208 |
. . . . . . . . 9
| |
| 35 | simpl 109 |
. . . . . . . . 9
| |
| 36 | simpr 110 |
. . . . . . . . 9
| |
| 37 | 0cnd 8100 |
. . . . . . . . 9
| |
| 38 | elfznn 10211 |
. . . . . . . . . . 11
| |
| 39 | 4 | fvconst2 5823 |
. . . . . . . . . . 11
|
| 40 | 38, 39 | syl 14 |
. . . . . . . . . 10
|
| 41 | 40 | adantl 277 |
. . . . . . . . 9
|
| 42 | 34, 35, 36, 37, 41 | fsum3 11813 |
. . . . . . . 8
|
| 43 | nnuz 9719 |
. . . . . . . . . . . . 13
| |
| 44 | 43 | fser0const 10717 |
. . . . . . . . . . . 12
|
| 45 | 44 | seqeq3d 10637 |
. . . . . . . . . . 11
|
| 46 | 45 | fveq1d 5601 |
. . . . . . . . . 10
|
| 47 | 43 | ser0 10715 |
. . . . . . . . . 10
|
| 48 | 46, 47 | eqtrd 2240 |
. . . . . . . . 9
|
| 49 | 35, 48 | syl 14 |
. . . . . . . 8
|
| 50 | 42, 49 | eqtrd 2240 |
. . . . . . 7
|
| 51 | 50 | ex 115 |
. . . . . 6
|
| 52 | 51 | exlimdv 1843 |
. . . . 5
|
| 53 | 52 | imp 124 |
. . . 4
|
| 54 | 33, 53 | jaoi 718 |
. . 3
|
| 55 | 30, 54 | syl 14 |
. 2
|
| 56 | 29, 55 | jaoi 718 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-frec 6500 df-1o 6525 df-oadd 6529 df-er 6643 df-en 6851 df-dom 6852 df-fin 6853 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-fz 10166 df-fzo 10300 df-seqfrec 10630 df-exp 10721 df-ihash 10958 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-clim 11705 df-sumdc 11780 |
| This theorem is referenced by: fsum00 11888 fsumdvds 12268 pcfac 12788 plymullem1 15335 nconstwlpolem0 16204 |
| Copyright terms: Public domain | W3C validator |