ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumz Unicode version

Theorem isumz 11050
Description: Any sum of zero over a summable set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
Assertion
Ref Expression
isumz  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  \/  A  e.  Fin )  ->  sum_ k  e.  A 
0  =  0 )
Distinct variable groups:    A, j, k   
j, M, k

Proof of Theorem isumz
Dummy variables  a  f  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2115 . . . 4  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2 simp1 964 . . . 4  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  M  e.  ZZ )
3 simp2 965 . . . 4  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  A  C_  ( ZZ>= `  M )
)
4 c0ex 7684 . . . . . . 7  |-  0  e.  _V
54fvconst2 5590 . . . . . 6  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
( ZZ>= `  M )  X.  { 0 } ) `
 k )  =  0 )
65adantl 273 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  ->  ( ( (
ZZ>= `  M )  X. 
{ 0 } ) `
 k )  =  0 )
7 eleq1w 2175 . . . . . . . 8  |-  ( j  =  k  ->  (
j  e.  A  <->  k  e.  A ) )
87dcbid 806 . . . . . . 7  |-  ( j  =  k  ->  (DECID  j  e.  A  <-> DECID  k  e.  A )
)
9 simpl3 969 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  ->  A. j  e.  (
ZZ>= `  M )DECID  j  e.  A )
10 simpr 109 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  ->  k  e.  (
ZZ>= `  M ) )
118, 9, 10rspcdva 2765 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  -> DECID 
k  e.  A )
12 ifiddc 3471 . . . . . 6  |-  (DECID  k  e.  A  ->  if (
k  e.  A , 
0 ,  0 )  =  0 )
1311, 12syl 14 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  ->  if ( k  e.  A ,  0 ,  0 )  =  0 )
146, 13eqtr4d 2150 . . . 4  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  ->  ( ( (
ZZ>= `  M )  X. 
{ 0 } ) `
 k )  =  if ( k  e.  A ,  0 ,  0 ) )
15 simp3 966 . . . . 5  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )
16 eleq1w 2175 . . . . . . 7  |-  ( j  =  a  ->  (
j  e.  A  <->  a  e.  A ) )
1716dcbid 806 . . . . . 6  |-  ( j  =  a  ->  (DECID  j  e.  A  <-> DECID  a  e.  A )
)
1817cbvralv 2628 . . . . 5  |-  ( A. j  e.  ( ZZ>= `  M )DECID  j  e.  A  <->  A. a  e.  ( ZZ>= `  M )DECID  a  e.  A )
1915, 18sylib 121 . . . 4  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  A. a  e.  ( ZZ>= `  M )DECID  a  e.  A )
20 0cnd 7683 . . . 4  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  A
)  ->  0  e.  CC )
211, 2, 3, 14, 19, 20zsumdc 11045 . . 3  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  sum_ k  e.  A  0  =  ( 
~~>  `  seq M (  +  ,  ( (
ZZ>= `  M )  X. 
{ 0 } ) ) ) )
22 fclim 10955 . . . . 5  |-  ~~>  : dom  ~~>  --> CC
23 ffun 5233 . . . . 5  |-  (  ~~>  : dom  ~~>  --> CC 
->  Fun  ~~>  )
2422, 23ax-mp 7 . . . 4  |-  Fun  ~~>
25 serclim0 10966 . . . . 5  |-  ( M  e.  ZZ  ->  seq M (  +  , 
( ( ZZ>= `  M
)  X.  { 0 } ) )  ~~>  0 )
262, 25syl 14 . . . 4  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  seq M (  +  , 
( ( ZZ>= `  M
)  X.  { 0 } ) )  ~~>  0 )
27 funbrfv 5414 . . . 4  |-  ( Fun  ~~>  ->  (  seq M (  +  ,  ( (
ZZ>= `  M )  X. 
{ 0 } ) )  ~~>  0  ->  (  ~~>  ` 
seq M (  +  ,  ( ( ZZ>= `  M )  X.  {
0 } ) ) )  =  0 ) )
2824, 26, 27mpsyl 65 . . 3  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  (  ~~>  ` 
seq M (  +  ,  ( ( ZZ>= `  M )  X.  {
0 } ) ) )  =  0 )
2921, 28eqtrd 2147 . 2  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  sum_ k  e.  A  0  = 
0 )
30 fz1f1o 11036 . . 3  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
( `  A )  e.  NN  /\  E. f 
f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) ) )
31 sumeq1 11016 . . . . 5  |-  ( A  =  (/)  ->  sum_ k  e.  A  0  =  sum_ k  e.  (/)  0 )
32 sum0 11049 . . . . 5  |-  sum_ k  e.  (/)  0  =  0
3331, 32syl6eq 2163 . . . 4  |-  ( A  =  (/)  ->  sum_ k  e.  A  0  = 
0 )
34 eqidd 2116 . . . . . . . . 9  |-  ( k  =  ( f `  n )  ->  0  =  0 )
35 simpl 108 . . . . . . . . 9  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  ( `  A )  e.  NN )
36 simpr 109 . . . . . . . . 9  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  f : ( 1 ... ( `  A
) ) -1-1-onto-> A )
37 0cnd 7683 . . . . . . . . 9  |-  ( ( ( ( `  A
)  e.  NN  /\  f : ( 1 ... ( `  A )
)
-1-1-onto-> A )  /\  k  e.  A )  ->  0  e.  CC )
38 elfznn 9727 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... ( `  A )
)  ->  n  e.  NN )
394fvconst2 5590 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
( NN  X.  {
0 } ) `  n )  =  0 )
4038, 39syl 14 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... ( `  A )
)  ->  ( ( NN  X.  { 0 } ) `  n )  =  0 )
4140adantl 273 . . . . . . . . 9  |-  ( ( ( ( `  A
)  e.  NN  /\  f : ( 1 ... ( `  A )
)
-1-1-onto-> A )  /\  n  e.  ( 1 ... ( `  A ) ) )  ->  ( ( NN 
X.  { 0 } ) `  n )  =  0 )
4234, 35, 36, 37, 41fsum3 11048 . . . . . . . 8  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  sum_ k  e.  A 
0  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( NN  X.  {
0 } ) `  n ) ,  0 ) ) ) `  ( `  A ) ) )
43 nnuz 9263 . . . . . . . . . . . . 13  |-  NN  =  ( ZZ>= `  1 )
4443fser0const 10182 . . . . . . . . . . . 12  |-  ( ( `  A )  e.  NN  ->  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( NN  X.  {
0 } ) `  n ) ,  0 ) )  =  ( NN  X.  { 0 } ) )
4544seqeq3d 10119 . . . . . . . . . . 11  |-  ( ( `  A )  e.  NN  ->  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( NN 
X.  { 0 } ) `  n ) ,  0 ) ) )  =  seq 1
(  +  ,  ( NN  X.  { 0 } ) ) )
4645fveq1d 5377 . . . . . . . . . 10  |-  ( ( `  A )  e.  NN  ->  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A
) ,  ( ( NN  X.  { 0 } ) `  n
) ,  0 ) ) ) `  ( `  A ) )  =  (  seq 1 (  +  ,  ( NN 
X.  { 0 } ) ) `  ( `  A ) ) )
4743ser0 10180 . . . . . . . . . 10  |-  ( ( `  A )  e.  NN  ->  (  seq 1 (  +  ,  ( NN 
X.  { 0 } ) ) `  ( `  A ) )  =  0 )
4846, 47eqtrd 2147 . . . . . . . . 9  |-  ( ( `  A )  e.  NN  ->  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A
) ,  ( ( NN  X.  { 0 } ) `  n
) ,  0 ) ) ) `  ( `  A ) )  =  0 )
4935, 48syl 14 . . . . . . . 8  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( NN  X.  {
0 } ) `  n ) ,  0 ) ) ) `  ( `  A ) )  =  0 )
5042, 49eqtrd 2147 . . . . . . 7  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  sum_ k  e.  A 
0  =  0 )
5150ex 114 . . . . . 6  |-  ( ( `  A )  e.  NN  ->  ( f : ( 1 ... ( `  A
) ) -1-1-onto-> A  ->  sum_ k  e.  A  0  =  0 ) )
5251exlimdv 1773 . . . . 5  |-  ( ( `  A )  e.  NN  ->  ( E. f  f : ( 1 ... ( `  A )
)
-1-1-onto-> A  ->  sum_ k  e.  A 
0  =  0 ) )
5352imp 123 . . . 4  |-  ( ( ( `  A )  e.  NN  /\  E. f 
f : ( 1 ... ( `  A
) ) -1-1-onto-> A )  ->  sum_ k  e.  A  0  = 
0 )
5433, 53jaoi 688 . . 3  |-  ( ( A  =  (/)  \/  (
( `  A )  e.  NN  /\  E. f 
f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  ->  sum_ k  e.  A  0  =  0 )
5530, 54syl 14 . 2  |-  ( A  e.  Fin  ->  sum_ k  e.  A  0  = 
0 )
5629, 55jaoi 688 1  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  \/  A  e.  Fin )  ->  sum_ k  e.  A 
0  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 680  DECID wdc 802    /\ w3a 945    = wceq 1314   E.wex 1451    e. wcel 1463   A.wral 2390    C_ wss 3037   (/)c0 3329   ifcif 3440   {csn 3493   class class class wbr 3895    |-> cmpt 3949    X. cxp 4497   dom cdm 4499   Fun wfun 5075   -->wf 5077   -1-1-onto->wf1o 5080   ` cfv 5081  (class class class)co 5728   Fincfn 6588   CCcc 7545   0cc0 7547   1c1 7548    + caddc 7550    <_ cle 7725   NNcn 8630   ZZcz 8958   ZZ>=cuz 9228   ...cfz 9683    seqcseq 10111  ♯chash 10414    ~~> cli 10939   sum_csu 11014
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-mulrcl 7644  ax-addcom 7645  ax-mulcom 7646  ax-addass 7647  ax-mulass 7648  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-1rid 7652  ax-0id 7653  ax-rnegex 7654  ax-precex 7655  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-apti 7660  ax-pre-ltadd 7661  ax-pre-mulgt0 7662  ax-pre-mulext 7663  ax-arch 7664  ax-caucvg 7665
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rmo 2398  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-if 3441  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-id 4175  df-po 4178  df-iso 4179  df-iord 4248  df-on 4250  df-ilim 4251  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-isom 5090  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-irdg 6221  df-frec 6242  df-1o 6267  df-oadd 6271  df-er 6383  df-en 6589  df-dom 6590  df-fin 6591  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-reap 8255  df-ap 8262  df-div 8346  df-inn 8631  df-2 8689  df-3 8690  df-4 8691  df-n0 8882  df-z 8959  df-uz 9229  df-q 9314  df-rp 9344  df-fz 9684  df-fzo 9813  df-seqfrec 10112  df-exp 10186  df-ihash 10415  df-cj 10507  df-re 10508  df-im 10509  df-rsqrt 10662  df-abs 10663  df-clim 10940  df-sumdc 11015
This theorem is referenced by:  fsum00  11123
  Copyright terms: Public domain W3C validator