ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumz Unicode version

Theorem isumz 11158
Description: Any sum of zero over a summable set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
Assertion
Ref Expression
isumz  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  \/  A  e.  Fin )  ->  sum_ k  e.  A 
0  =  0 )
Distinct variable groups:    A, j, k   
j, M, k

Proof of Theorem isumz
Dummy variables  a  f  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2139 . . . 4  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2 simp1 981 . . . 4  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  M  e.  ZZ )
3 simp2 982 . . . 4  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  A  C_  ( ZZ>= `  M )
)
4 c0ex 7760 . . . . . . 7  |-  0  e.  _V
54fvconst2 5636 . . . . . 6  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
( ZZ>= `  M )  X.  { 0 } ) `
 k )  =  0 )
65adantl 275 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  ->  ( ( (
ZZ>= `  M )  X. 
{ 0 } ) `
 k )  =  0 )
7 eleq1w 2200 . . . . . . . 8  |-  ( j  =  k  ->  (
j  e.  A  <->  k  e.  A ) )
87dcbid 823 . . . . . . 7  |-  ( j  =  k  ->  (DECID  j  e.  A  <-> DECID  k  e.  A )
)
9 simpl3 986 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  ->  A. j  e.  (
ZZ>= `  M )DECID  j  e.  A )
10 simpr 109 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  ->  k  e.  (
ZZ>= `  M ) )
118, 9, 10rspcdva 2794 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  -> DECID 
k  e.  A )
12 ifiddc 3505 . . . . . 6  |-  (DECID  k  e.  A  ->  if (
k  e.  A , 
0 ,  0 )  =  0 )
1311, 12syl 14 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  ->  if ( k  e.  A ,  0 ,  0 )  =  0 )
146, 13eqtr4d 2175 . . . 4  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  ->  ( ( (
ZZ>= `  M )  X. 
{ 0 } ) `
 k )  =  if ( k  e.  A ,  0 ,  0 ) )
15 simp3 983 . . . . 5  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )
16 eleq1w 2200 . . . . . . 7  |-  ( j  =  a  ->  (
j  e.  A  <->  a  e.  A ) )
1716dcbid 823 . . . . . 6  |-  ( j  =  a  ->  (DECID  j  e.  A  <-> DECID  a  e.  A )
)
1817cbvralv 2654 . . . . 5  |-  ( A. j  e.  ( ZZ>= `  M )DECID  j  e.  A  <->  A. a  e.  ( ZZ>= `  M )DECID  a  e.  A )
1915, 18sylib 121 . . . 4  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  A. a  e.  ( ZZ>= `  M )DECID  a  e.  A )
20 0cnd 7759 . . . 4  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  A
)  ->  0  e.  CC )
211, 2, 3, 14, 19, 20zsumdc 11153 . . 3  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  sum_ k  e.  A  0  =  ( 
~~>  `  seq M (  +  ,  ( (
ZZ>= `  M )  X. 
{ 0 } ) ) ) )
22 fclim 11063 . . . . 5  |-  ~~>  : dom  ~~>  --> CC
23 ffun 5275 . . . . 5  |-  (  ~~>  : dom  ~~>  --> CC 
->  Fun  ~~>  )
2422, 23ax-mp 5 . . . 4  |-  Fun  ~~>
25 serclim0 11074 . . . . 5  |-  ( M  e.  ZZ  ->  seq M (  +  , 
( ( ZZ>= `  M
)  X.  { 0 } ) )  ~~>  0 )
262, 25syl 14 . . . 4  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  seq M (  +  , 
( ( ZZ>= `  M
)  X.  { 0 } ) )  ~~>  0 )
27 funbrfv 5460 . . . 4  |-  ( Fun  ~~>  ->  (  seq M (  +  ,  ( (
ZZ>= `  M )  X. 
{ 0 } ) )  ~~>  0  ->  (  ~~>  ` 
seq M (  +  ,  ( ( ZZ>= `  M )  X.  {
0 } ) ) )  =  0 ) )
2824, 26, 27mpsyl 65 . . 3  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  (  ~~>  ` 
seq M (  +  ,  ( ( ZZ>= `  M )  X.  {
0 } ) ) )  =  0 )
2921, 28eqtrd 2172 . 2  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  sum_ k  e.  A  0  = 
0 )
30 fz1f1o 11144 . . 3  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
( `  A )  e.  NN  /\  E. f 
f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) ) )
31 sumeq1 11124 . . . . 5  |-  ( A  =  (/)  ->  sum_ k  e.  A  0  =  sum_ k  e.  (/)  0 )
32 sum0 11157 . . . . 5  |-  sum_ k  e.  (/)  0  =  0
3331, 32syl6eq 2188 . . . 4  |-  ( A  =  (/)  ->  sum_ k  e.  A  0  = 
0 )
34 eqidd 2140 . . . . . . . . 9  |-  ( k  =  ( f `  n )  ->  0  =  0 )
35 simpl 108 . . . . . . . . 9  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  ( `  A )  e.  NN )
36 simpr 109 . . . . . . . . 9  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  f : ( 1 ... ( `  A
) ) -1-1-onto-> A )
37 0cnd 7759 . . . . . . . . 9  |-  ( ( ( ( `  A
)  e.  NN  /\  f : ( 1 ... ( `  A )
)
-1-1-onto-> A )  /\  k  e.  A )  ->  0  e.  CC )
38 elfznn 9834 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... ( `  A )
)  ->  n  e.  NN )
394fvconst2 5636 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
( NN  X.  {
0 } ) `  n )  =  0 )
4038, 39syl 14 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... ( `  A )
)  ->  ( ( NN  X.  { 0 } ) `  n )  =  0 )
4140adantl 275 . . . . . . . . 9  |-  ( ( ( ( `  A
)  e.  NN  /\  f : ( 1 ... ( `  A )
)
-1-1-onto-> A )  /\  n  e.  ( 1 ... ( `  A ) ) )  ->  ( ( NN 
X.  { 0 } ) `  n )  =  0 )
4234, 35, 36, 37, 41fsum3 11156 . . . . . . . 8  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  sum_ k  e.  A 
0  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( NN  X.  {
0 } ) `  n ) ,  0 ) ) ) `  ( `  A ) ) )
43 nnuz 9361 . . . . . . . . . . . . 13  |-  NN  =  ( ZZ>= `  1 )
4443fser0const 10289 . . . . . . . . . . . 12  |-  ( ( `  A )  e.  NN  ->  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( NN  X.  {
0 } ) `  n ) ,  0 ) )  =  ( NN  X.  { 0 } ) )
4544seqeq3d 10226 . . . . . . . . . . 11  |-  ( ( `  A )  e.  NN  ->  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( NN 
X.  { 0 } ) `  n ) ,  0 ) ) )  =  seq 1
(  +  ,  ( NN  X.  { 0 } ) ) )
4645fveq1d 5423 . . . . . . . . . 10  |-  ( ( `  A )  e.  NN  ->  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A
) ,  ( ( NN  X.  { 0 } ) `  n
) ,  0 ) ) ) `  ( `  A ) )  =  (  seq 1 (  +  ,  ( NN 
X.  { 0 } ) ) `  ( `  A ) ) )
4743ser0 10287 . . . . . . . . . 10  |-  ( ( `  A )  e.  NN  ->  (  seq 1 (  +  ,  ( NN 
X.  { 0 } ) ) `  ( `  A ) )  =  0 )
4846, 47eqtrd 2172 . . . . . . . . 9  |-  ( ( `  A )  e.  NN  ->  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A
) ,  ( ( NN  X.  { 0 } ) `  n
) ,  0 ) ) ) `  ( `  A ) )  =  0 )
4935, 48syl 14 . . . . . . . 8  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( NN  X.  {
0 } ) `  n ) ,  0 ) ) ) `  ( `  A ) )  =  0 )
5042, 49eqtrd 2172 . . . . . . 7  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  sum_ k  e.  A 
0  =  0 )
5150ex 114 . . . . . 6  |-  ( ( `  A )  e.  NN  ->  ( f : ( 1 ... ( `  A
) ) -1-1-onto-> A  ->  sum_ k  e.  A  0  =  0 ) )
5251exlimdv 1791 . . . . 5  |-  ( ( `  A )  e.  NN  ->  ( E. f  f : ( 1 ... ( `  A )
)
-1-1-onto-> A  ->  sum_ k  e.  A 
0  =  0 ) )
5352imp 123 . . . 4  |-  ( ( ( `  A )  e.  NN  /\  E. f 
f : ( 1 ... ( `  A
) ) -1-1-onto-> A )  ->  sum_ k  e.  A  0  = 
0 )
5433, 53jaoi 705 . . 3  |-  ( ( A  =  (/)  \/  (
( `  A )  e.  NN  /\  E. f 
f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  ->  sum_ k  e.  A  0  =  0 )
5530, 54syl 14 . 2  |-  ( A  e.  Fin  ->  sum_ k  e.  A  0  = 
0 )
5629, 55jaoi 705 1  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  \/  A  e.  Fin )  ->  sum_ k  e.  A 
0  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 697  DECID wdc 819    /\ w3a 962    = wceq 1331   E.wex 1468    e. wcel 1480   A.wral 2416    C_ wss 3071   (/)c0 3363   ifcif 3474   {csn 3527   class class class wbr 3929    |-> cmpt 3989    X. cxp 4537   dom cdm 4539   Fun wfun 5117   -->wf 5119   -1-1-onto->wf1o 5122   ` cfv 5123  (class class class)co 5774   Fincfn 6634   CCcc 7618   0cc0 7620   1c1 7621    + caddc 7623    <_ cle 7801   NNcn 8720   ZZcz 9054   ZZ>=cuz 9326   ...cfz 9790    seqcseq 10218  ♯chash 10521    ~~> cli 11047   sum_csu 11122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123
This theorem is referenced by:  fsum00  11231
  Copyright terms: Public domain W3C validator