ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumz Unicode version

Theorem isumz 11700
Description: Any sum of zero over a summable set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
Assertion
Ref Expression
isumz  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  \/  A  e.  Fin )  ->  sum_ k  e.  A 
0  =  0 )
Distinct variable groups:    A, j, k   
j, M, k

Proof of Theorem isumz
Dummy variables  a  f  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2205 . . . 4  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2 simp1 1000 . . . 4  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  M  e.  ZZ )
3 simp2 1001 . . . 4  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  A  C_  ( ZZ>= `  M )
)
4 c0ex 8066 . . . . . . 7  |-  0  e.  _V
54fvconst2 5800 . . . . . 6  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
( ZZ>= `  M )  X.  { 0 } ) `
 k )  =  0 )
65adantl 277 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  ->  ( ( (
ZZ>= `  M )  X. 
{ 0 } ) `
 k )  =  0 )
7 eleq1w 2266 . . . . . . . 8  |-  ( j  =  k  ->  (
j  e.  A  <->  k  e.  A ) )
87dcbid 840 . . . . . . 7  |-  ( j  =  k  ->  (DECID  j  e.  A  <-> DECID  k  e.  A )
)
9 simpl3 1005 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  ->  A. j  e.  (
ZZ>= `  M )DECID  j  e.  A )
10 simpr 110 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  ->  k  e.  (
ZZ>= `  M ) )
118, 9, 10rspcdva 2882 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  -> DECID 
k  e.  A )
12 ifiddc 3606 . . . . . 6  |-  (DECID  k  e.  A  ->  if (
k  e.  A , 
0 ,  0 )  =  0 )
1311, 12syl 14 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  ->  if ( k  e.  A ,  0 ,  0 )  =  0 )
146, 13eqtr4d 2241 . . . 4  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  ->  ( ( (
ZZ>= `  M )  X. 
{ 0 } ) `
 k )  =  if ( k  e.  A ,  0 ,  0 ) )
15 simp3 1002 . . . . 5  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )
16 eleq1w 2266 . . . . . . 7  |-  ( j  =  a  ->  (
j  e.  A  <->  a  e.  A ) )
1716dcbid 840 . . . . . 6  |-  ( j  =  a  ->  (DECID  j  e.  A  <-> DECID  a  e.  A )
)
1817cbvralv 2738 . . . . 5  |-  ( A. j  e.  ( ZZ>= `  M )DECID  j  e.  A  <->  A. a  e.  ( ZZ>= `  M )DECID  a  e.  A )
1915, 18sylib 122 . . . 4  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  A. a  e.  ( ZZ>= `  M )DECID  a  e.  A )
20 0cnd 8065 . . . 4  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  A
)  ->  0  e.  CC )
211, 2, 3, 14, 19, 20zsumdc 11695 . . 3  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  sum_ k  e.  A  0  =  ( 
~~>  `  seq M (  +  ,  ( (
ZZ>= `  M )  X. 
{ 0 } ) ) ) )
22 fclim 11605 . . . . 5  |-  ~~>  : dom  ~~>  --> CC
23 ffun 5428 . . . . 5  |-  (  ~~>  : dom  ~~>  --> CC 
->  Fun  ~~>  )
2422, 23ax-mp 5 . . . 4  |-  Fun  ~~>
25 serclim0 11616 . . . . 5  |-  ( M  e.  ZZ  ->  seq M (  +  , 
( ( ZZ>= `  M
)  X.  { 0 } ) )  ~~>  0 )
262, 25syl 14 . . . 4  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  seq M (  +  , 
( ( ZZ>= `  M
)  X.  { 0 } ) )  ~~>  0 )
27 funbrfv 5617 . . . 4  |-  ( Fun  ~~>  ->  (  seq M (  +  ,  ( (
ZZ>= `  M )  X. 
{ 0 } ) )  ~~>  0  ->  (  ~~>  ` 
seq M (  +  ,  ( ( ZZ>= `  M )  X.  {
0 } ) ) )  =  0 ) )
2824, 26, 27mpsyl 65 . . 3  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  (  ~~>  ` 
seq M (  +  ,  ( ( ZZ>= `  M )  X.  {
0 } ) ) )  =  0 )
2921, 28eqtrd 2238 . 2  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  sum_ k  e.  A  0  = 
0 )
30 fz1f1o 11686 . . 3  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
( `  A )  e.  NN  /\  E. f 
f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) ) )
31 sumeq1 11666 . . . . 5  |-  ( A  =  (/)  ->  sum_ k  e.  A  0  =  sum_ k  e.  (/)  0 )
32 sum0 11699 . . . . 5  |-  sum_ k  e.  (/)  0  =  0
3331, 32eqtrdi 2254 . . . 4  |-  ( A  =  (/)  ->  sum_ k  e.  A  0  = 
0 )
34 eqidd 2206 . . . . . . . . 9  |-  ( k  =  ( f `  n )  ->  0  =  0 )
35 simpl 109 . . . . . . . . 9  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  ( `  A )  e.  NN )
36 simpr 110 . . . . . . . . 9  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  f : ( 1 ... ( `  A
) ) -1-1-onto-> A )
37 0cnd 8065 . . . . . . . . 9  |-  ( ( ( ( `  A
)  e.  NN  /\  f : ( 1 ... ( `  A )
)
-1-1-onto-> A )  /\  k  e.  A )  ->  0  e.  CC )
38 elfznn 10176 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... ( `  A )
)  ->  n  e.  NN )
394fvconst2 5800 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
( NN  X.  {
0 } ) `  n )  =  0 )
4038, 39syl 14 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... ( `  A )
)  ->  ( ( NN  X.  { 0 } ) `  n )  =  0 )
4140adantl 277 . . . . . . . . 9  |-  ( ( ( ( `  A
)  e.  NN  /\  f : ( 1 ... ( `  A )
)
-1-1-onto-> A )  /\  n  e.  ( 1 ... ( `  A ) ) )  ->  ( ( NN 
X.  { 0 } ) `  n )  =  0 )
4234, 35, 36, 37, 41fsum3 11698 . . . . . . . 8  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  sum_ k  e.  A 
0  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( NN  X.  {
0 } ) `  n ) ,  0 ) ) ) `  ( `  A ) ) )
43 nnuz 9684 . . . . . . . . . . . . 13  |-  NN  =  ( ZZ>= `  1 )
4443fser0const 10680 . . . . . . . . . . . 12  |-  ( ( `  A )  e.  NN  ->  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( NN  X.  {
0 } ) `  n ) ,  0 ) )  =  ( NN  X.  { 0 } ) )
4544seqeq3d 10600 . . . . . . . . . . 11  |-  ( ( `  A )  e.  NN  ->  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( NN 
X.  { 0 } ) `  n ) ,  0 ) ) )  =  seq 1
(  +  ,  ( NN  X.  { 0 } ) ) )
4645fveq1d 5578 . . . . . . . . . 10  |-  ( ( `  A )  e.  NN  ->  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A
) ,  ( ( NN  X.  { 0 } ) `  n
) ,  0 ) ) ) `  ( `  A ) )  =  (  seq 1 (  +  ,  ( NN 
X.  { 0 } ) ) `  ( `  A ) ) )
4743ser0 10678 . . . . . . . . . 10  |-  ( ( `  A )  e.  NN  ->  (  seq 1 (  +  ,  ( NN 
X.  { 0 } ) ) `  ( `  A ) )  =  0 )
4846, 47eqtrd 2238 . . . . . . . . 9  |-  ( ( `  A )  e.  NN  ->  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A
) ,  ( ( NN  X.  { 0 } ) `  n
) ,  0 ) ) ) `  ( `  A ) )  =  0 )
4935, 48syl 14 . . . . . . . 8  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( NN  X.  {
0 } ) `  n ) ,  0 ) ) ) `  ( `  A ) )  =  0 )
5042, 49eqtrd 2238 . . . . . . 7  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  sum_ k  e.  A 
0  =  0 )
5150ex 115 . . . . . 6  |-  ( ( `  A )  e.  NN  ->  ( f : ( 1 ... ( `  A
) ) -1-1-onto-> A  ->  sum_ k  e.  A  0  =  0 ) )
5251exlimdv 1842 . . . . 5  |-  ( ( `  A )  e.  NN  ->  ( E. f  f : ( 1 ... ( `  A )
)
-1-1-onto-> A  ->  sum_ k  e.  A 
0  =  0 ) )
5352imp 124 . . . 4  |-  ( ( ( `  A )  e.  NN  /\  E. f 
f : ( 1 ... ( `  A
) ) -1-1-onto-> A )  ->  sum_ k  e.  A  0  = 
0 )
5433, 53jaoi 718 . . 3  |-  ( ( A  =  (/)  \/  (
( `  A )  e.  NN  /\  E. f 
f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  ->  sum_ k  e.  A  0  =  0 )
5530, 54syl 14 . 2  |-  ( A  e.  Fin  ->  sum_ k  e.  A  0  = 
0 )
5629, 55jaoi 718 1  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  \/  A  e.  Fin )  ->  sum_ k  e.  A 
0  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710  DECID wdc 836    /\ w3a 981    = wceq 1373   E.wex 1515    e. wcel 2176   A.wral 2484    C_ wss 3166   (/)c0 3460   ifcif 3571   {csn 3633   class class class wbr 4044    |-> cmpt 4105    X. cxp 4673   dom cdm 4675   Fun wfun 5265   -->wf 5267   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5944   Fincfn 6827   CCcc 7923   0cc0 7925   1c1 7926    + caddc 7928    <_ cle 8108   NNcn 9036   ZZcz 9372   ZZ>=cuz 9648   ...cfz 10130    seqcseq 10592  ♯chash 10920    ~~> cli 11589   sum_csu 11664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-frec 6477  df-1o 6502  df-oadd 6506  df-er 6620  df-en 6828  df-dom 6829  df-fin 6830  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-seqfrec 10593  df-exp 10684  df-ihash 10921  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590  df-sumdc 11665
This theorem is referenced by:  fsum00  11773  fsumdvds  12153  pcfac  12673  plymullem1  15220  nconstwlpolem0  16002
  Copyright terms: Public domain W3C validator