| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isumz | Unicode version | ||
| Description: Any sum of zero over a summable set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 9-Apr-2023.) |
| Ref | Expression |
|---|---|
| isumz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 |
. . . 4
| |
| 2 | simp1 999 |
. . . 4
| |
| 3 | simp2 1000 |
. . . 4
| |
| 4 | c0ex 8020 |
. . . . . . 7
| |
| 5 | 4 | fvconst2 5778 |
. . . . . 6
|
| 6 | 5 | adantl 277 |
. . . . 5
|
| 7 | eleq1w 2257 |
. . . . . . . 8
| |
| 8 | 7 | dcbid 839 |
. . . . . . 7
|
| 9 | simpl3 1004 |
. . . . . . 7
| |
| 10 | simpr 110 |
. . . . . . 7
| |
| 11 | 8, 9, 10 | rspcdva 2873 |
. . . . . 6
|
| 12 | ifiddc 3595 |
. . . . . 6
| |
| 13 | 11, 12 | syl 14 |
. . . . 5
|
| 14 | 6, 13 | eqtr4d 2232 |
. . . 4
|
| 15 | simp3 1001 |
. . . . 5
| |
| 16 | eleq1w 2257 |
. . . . . . 7
| |
| 17 | 16 | dcbid 839 |
. . . . . 6
|
| 18 | 17 | cbvralv 2729 |
. . . . 5
|
| 19 | 15, 18 | sylib 122 |
. . . 4
|
| 20 | 0cnd 8019 |
. . . 4
| |
| 21 | 1, 2, 3, 14, 19, 20 | zsumdc 11549 |
. . 3
|
| 22 | fclim 11459 |
. . . . 5
| |
| 23 | ffun 5410 |
. . . . 5
| |
| 24 | 22, 23 | ax-mp 5 |
. . . 4
|
| 25 | serclim0 11470 |
. . . . 5
| |
| 26 | 2, 25 | syl 14 |
. . . 4
|
| 27 | funbrfv 5599 |
. . . 4
| |
| 28 | 24, 26, 27 | mpsyl 65 |
. . 3
|
| 29 | 21, 28 | eqtrd 2229 |
. 2
|
| 30 | fz1f1o 11540 |
. . 3
| |
| 31 | sumeq1 11520 |
. . . . 5
| |
| 32 | sum0 11553 |
. . . . 5
| |
| 33 | 31, 32 | eqtrdi 2245 |
. . . 4
|
| 34 | eqidd 2197 |
. . . . . . . . 9
| |
| 35 | simpl 109 |
. . . . . . . . 9
| |
| 36 | simpr 110 |
. . . . . . . . 9
| |
| 37 | 0cnd 8019 |
. . . . . . . . 9
| |
| 38 | elfznn 10129 |
. . . . . . . . . . 11
| |
| 39 | 4 | fvconst2 5778 |
. . . . . . . . . . 11
|
| 40 | 38, 39 | syl 14 |
. . . . . . . . . 10
|
| 41 | 40 | adantl 277 |
. . . . . . . . 9
|
| 42 | 34, 35, 36, 37, 41 | fsum3 11552 |
. . . . . . . 8
|
| 43 | nnuz 9637 |
. . . . . . . . . . . . 13
| |
| 44 | 43 | fser0const 10627 |
. . . . . . . . . . . 12
|
| 45 | 44 | seqeq3d 10547 |
. . . . . . . . . . 11
|
| 46 | 45 | fveq1d 5560 |
. . . . . . . . . 10
|
| 47 | 43 | ser0 10625 |
. . . . . . . . . 10
|
| 48 | 46, 47 | eqtrd 2229 |
. . . . . . . . 9
|
| 49 | 35, 48 | syl 14 |
. . . . . . . 8
|
| 50 | 42, 49 | eqtrd 2229 |
. . . . . . 7
|
| 51 | 50 | ex 115 |
. . . . . 6
|
| 52 | 51 | exlimdv 1833 |
. . . . 5
|
| 53 | 52 | imp 124 |
. . . 4
|
| 54 | 33, 53 | jaoi 717 |
. . 3
|
| 55 | 30, 54 | syl 14 |
. 2
|
| 56 | 29, 55 | jaoi 717 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-oadd 6478 df-er 6592 df-en 6800 df-dom 6801 df-fin 6802 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-fzo 10218 df-seqfrec 10540 df-exp 10631 df-ihash 10868 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-sumdc 11519 |
| This theorem is referenced by: fsum00 11627 fsumdvds 12007 pcfac 12519 plymullem1 14984 nconstwlpolem0 15707 |
| Copyright terms: Public domain | W3C validator |