ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumz Unicode version

Theorem isumz 11535
Description: Any sum of zero over a summable set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
Assertion
Ref Expression
isumz  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  \/  A  e.  Fin )  ->  sum_ k  e.  A 
0  =  0 )
Distinct variable groups:    A, j, k   
j, M, k

Proof of Theorem isumz
Dummy variables  a  f  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . . 4  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2 simp1 999 . . . 4  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  M  e.  ZZ )
3 simp2 1000 . . . 4  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  A  C_  ( ZZ>= `  M )
)
4 c0ex 8015 . . . . . . 7  |-  0  e.  _V
54fvconst2 5775 . . . . . 6  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
( ZZ>= `  M )  X.  { 0 } ) `
 k )  =  0 )
65adantl 277 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  ->  ( ( (
ZZ>= `  M )  X. 
{ 0 } ) `
 k )  =  0 )
7 eleq1w 2254 . . . . . . . 8  |-  ( j  =  k  ->  (
j  e.  A  <->  k  e.  A ) )
87dcbid 839 . . . . . . 7  |-  ( j  =  k  ->  (DECID  j  e.  A  <-> DECID  k  e.  A )
)
9 simpl3 1004 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  ->  A. j  e.  (
ZZ>= `  M )DECID  j  e.  A )
10 simpr 110 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  ->  k  e.  (
ZZ>= `  M ) )
118, 9, 10rspcdva 2870 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  -> DECID 
k  e.  A )
12 ifiddc 3592 . . . . . 6  |-  (DECID  k  e.  A  ->  if (
k  e.  A , 
0 ,  0 )  =  0 )
1311, 12syl 14 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  ->  if ( k  e.  A ,  0 ,  0 )  =  0 )
146, 13eqtr4d 2229 . . . 4  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  ->  ( ( (
ZZ>= `  M )  X. 
{ 0 } ) `
 k )  =  if ( k  e.  A ,  0 ,  0 ) )
15 simp3 1001 . . . . 5  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )
16 eleq1w 2254 . . . . . . 7  |-  ( j  =  a  ->  (
j  e.  A  <->  a  e.  A ) )
1716dcbid 839 . . . . . 6  |-  ( j  =  a  ->  (DECID  j  e.  A  <-> DECID  a  e.  A )
)
1817cbvralv 2726 . . . . 5  |-  ( A. j  e.  ( ZZ>= `  M )DECID  j  e.  A  <->  A. a  e.  ( ZZ>= `  M )DECID  a  e.  A )
1915, 18sylib 122 . . . 4  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  A. a  e.  ( ZZ>= `  M )DECID  a  e.  A )
20 0cnd 8014 . . . 4  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  A
)  ->  0  e.  CC )
211, 2, 3, 14, 19, 20zsumdc 11530 . . 3  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  sum_ k  e.  A  0  =  ( 
~~>  `  seq M (  +  ,  ( (
ZZ>= `  M )  X. 
{ 0 } ) ) ) )
22 fclim 11440 . . . . 5  |-  ~~>  : dom  ~~>  --> CC
23 ffun 5407 . . . . 5  |-  (  ~~>  : dom  ~~>  --> CC 
->  Fun  ~~>  )
2422, 23ax-mp 5 . . . 4  |-  Fun  ~~>
25 serclim0 11451 . . . . 5  |-  ( M  e.  ZZ  ->  seq M (  +  , 
( ( ZZ>= `  M
)  X.  { 0 } ) )  ~~>  0 )
262, 25syl 14 . . . 4  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  seq M (  +  , 
( ( ZZ>= `  M
)  X.  { 0 } ) )  ~~>  0 )
27 funbrfv 5596 . . . 4  |-  ( Fun  ~~>  ->  (  seq M (  +  ,  ( (
ZZ>= `  M )  X. 
{ 0 } ) )  ~~>  0  ->  (  ~~>  ` 
seq M (  +  ,  ( ( ZZ>= `  M )  X.  {
0 } ) ) )  =  0 ) )
2824, 26, 27mpsyl 65 . . 3  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  (  ~~>  ` 
seq M (  +  ,  ( ( ZZ>= `  M )  X.  {
0 } ) ) )  =  0 )
2921, 28eqtrd 2226 . 2  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  sum_ k  e.  A  0  = 
0 )
30 fz1f1o 11521 . . 3  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
( `  A )  e.  NN  /\  E. f 
f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) ) )
31 sumeq1 11501 . . . . 5  |-  ( A  =  (/)  ->  sum_ k  e.  A  0  =  sum_ k  e.  (/)  0 )
32 sum0 11534 . . . . 5  |-  sum_ k  e.  (/)  0  =  0
3331, 32eqtrdi 2242 . . . 4  |-  ( A  =  (/)  ->  sum_ k  e.  A  0  = 
0 )
34 eqidd 2194 . . . . . . . . 9  |-  ( k  =  ( f `  n )  ->  0  =  0 )
35 simpl 109 . . . . . . . . 9  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  ( `  A )  e.  NN )
36 simpr 110 . . . . . . . . 9  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  f : ( 1 ... ( `  A
) ) -1-1-onto-> A )
37 0cnd 8014 . . . . . . . . 9  |-  ( ( ( ( `  A
)  e.  NN  /\  f : ( 1 ... ( `  A )
)
-1-1-onto-> A )  /\  k  e.  A )  ->  0  e.  CC )
38 elfznn 10123 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... ( `  A )
)  ->  n  e.  NN )
394fvconst2 5775 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
( NN  X.  {
0 } ) `  n )  =  0 )
4038, 39syl 14 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... ( `  A )
)  ->  ( ( NN  X.  { 0 } ) `  n )  =  0 )
4140adantl 277 . . . . . . . . 9  |-  ( ( ( ( `  A
)  e.  NN  /\  f : ( 1 ... ( `  A )
)
-1-1-onto-> A )  /\  n  e.  ( 1 ... ( `  A ) ) )  ->  ( ( NN 
X.  { 0 } ) `  n )  =  0 )
4234, 35, 36, 37, 41fsum3 11533 . . . . . . . 8  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  sum_ k  e.  A 
0  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( NN  X.  {
0 } ) `  n ) ,  0 ) ) ) `  ( `  A ) ) )
43 nnuz 9631 . . . . . . . . . . . . 13  |-  NN  =  ( ZZ>= `  1 )
4443fser0const 10609 . . . . . . . . . . . 12  |-  ( ( `  A )  e.  NN  ->  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( NN  X.  {
0 } ) `  n ) ,  0 ) )  =  ( NN  X.  { 0 } ) )
4544seqeq3d 10529 . . . . . . . . . . 11  |-  ( ( `  A )  e.  NN  ->  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( NN 
X.  { 0 } ) `  n ) ,  0 ) ) )  =  seq 1
(  +  ,  ( NN  X.  { 0 } ) ) )
4645fveq1d 5557 . . . . . . . . . 10  |-  ( ( `  A )  e.  NN  ->  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A
) ,  ( ( NN  X.  { 0 } ) `  n
) ,  0 ) ) ) `  ( `  A ) )  =  (  seq 1 (  +  ,  ( NN 
X.  { 0 } ) ) `  ( `  A ) ) )
4743ser0 10607 . . . . . . . . . 10  |-  ( ( `  A )  e.  NN  ->  (  seq 1 (  +  ,  ( NN 
X.  { 0 } ) ) `  ( `  A ) )  =  0 )
4846, 47eqtrd 2226 . . . . . . . . 9  |-  ( ( `  A )  e.  NN  ->  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A
) ,  ( ( NN  X.  { 0 } ) `  n
) ,  0 ) ) ) `  ( `  A ) )  =  0 )
4935, 48syl 14 . . . . . . . 8  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( NN  X.  {
0 } ) `  n ) ,  0 ) ) ) `  ( `  A ) )  =  0 )
5042, 49eqtrd 2226 . . . . . . 7  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  sum_ k  e.  A 
0  =  0 )
5150ex 115 . . . . . 6  |-  ( ( `  A )  e.  NN  ->  ( f : ( 1 ... ( `  A
) ) -1-1-onto-> A  ->  sum_ k  e.  A  0  =  0 ) )
5251exlimdv 1830 . . . . 5  |-  ( ( `  A )  e.  NN  ->  ( E. f  f : ( 1 ... ( `  A )
)
-1-1-onto-> A  ->  sum_ k  e.  A 
0  =  0 ) )
5352imp 124 . . . 4  |-  ( ( ( `  A )  e.  NN  /\  E. f 
f : ( 1 ... ( `  A
) ) -1-1-onto-> A )  ->  sum_ k  e.  A  0  = 
0 )
5433, 53jaoi 717 . . 3  |-  ( ( A  =  (/)  \/  (
( `  A )  e.  NN  /\  E. f 
f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  ->  sum_ k  e.  A  0  =  0 )
5530, 54syl 14 . 2  |-  ( A  e.  Fin  ->  sum_ k  e.  A  0  = 
0 )
5629, 55jaoi 717 1  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  \/  A  e.  Fin )  ->  sum_ k  e.  A 
0  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2164   A.wral 2472    C_ wss 3154   (/)c0 3447   ifcif 3558   {csn 3619   class class class wbr 4030    |-> cmpt 4091    X. cxp 4658   dom cdm 4660   Fun wfun 5249   -->wf 5251   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5919   Fincfn 6796   CCcc 7872   0cc0 7874   1c1 7875    + caddc 7877    <_ cle 8057   NNcn 8984   ZZcz 9320   ZZ>=cuz 9595   ...cfz 10077    seqcseq 10521  ♯chash 10849    ~~> cli 11424   sum_csu 11499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500
This theorem is referenced by:  fsum00  11608  pcfac  12491  plymullem1  14927  nconstwlpolem0  15623
  Copyright terms: Public domain W3C validator