ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdilem2 Unicode version

Theorem lgsdilem2 15152
Description: Lemma for lgsdi 15153. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsdilem2.1  |-  ( ph  ->  A  e.  ZZ )
lgsdilem2.2  |-  ( ph  ->  M  e.  ZZ )
lgsdilem2.3  |-  ( ph  ->  N  e.  ZZ )
lgsdilem2.4  |-  ( ph  ->  M  =/=  0 )
lgsdilem2.5  |-  ( ph  ->  N  =/=  0 )
lgsdilem2.6  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) )
Assertion
Ref Expression
lgsdilem2  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 ( abs `  M
) )  =  (  seq 1 (  x.  ,  F ) `  ( abs `  ( M  x.  N ) ) ) )
Distinct variable groups:    n, M    A, n    n, N
Allowed substitution hints:    ph( n)    F( n)

Proof of Theorem lgsdilem2
Dummy variables  k  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulrid 8016 . . 3  |-  ( k  e.  CC  ->  (
k  x.  1 )  =  k )
21adantl 277 . 2  |-  ( (
ph  /\  k  e.  CC )  ->  ( k  x.  1 )  =  k )
3 lgsdilem2.2 . . . 4  |-  ( ph  ->  M  e.  ZZ )
4 lgsdilem2.4 . . . 4  |-  ( ph  ->  M  =/=  0 )
5 nnabscl 11244 . . . 4  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  M
)  e.  NN )
63, 4, 5syl2anc 411 . . 3  |-  ( ph  ->  ( abs `  M
)  e.  NN )
7 nnuz 9628 . . 3  |-  NN  =  ( ZZ>= `  1 )
86, 7eleqtrdi 2286 . 2  |-  ( ph  ->  ( abs `  M
)  e.  ( ZZ>= ` 
1 ) )
96nnzd 9438 . . 3  |-  ( ph  ->  ( abs `  M
)  e.  ZZ )
10 lgsdilem2.3 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
113, 10zmulcld 9445 . . . . 5  |-  ( ph  ->  ( M  x.  N
)  e.  ZZ )
123zcnd 9440 . . . . . . 7  |-  ( ph  ->  M  e.  CC )
1310zcnd 9440 . . . . . . 7  |-  ( ph  ->  N  e.  CC )
14 0z 9328 . . . . . . . . 9  |-  0  e.  ZZ
15 zapne 9391 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  ->  ( M #  0  <->  M  =/=  0 ) )
163, 14, 15sylancl 413 . . . . . . . 8  |-  ( ph  ->  ( M #  0  <->  M  =/=  0 ) )
174, 16mpbird 167 . . . . . . 7  |-  ( ph  ->  M #  0 )
18 lgsdilem2.5 . . . . . . . 8  |-  ( ph  ->  N  =/=  0 )
19 zapne 9391 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  ->  ( N #  0  <->  N  =/=  0 ) )
2010, 14, 19sylancl 413 . . . . . . . 8  |-  ( ph  ->  ( N #  0  <->  N  =/=  0 ) )
2118, 20mpbird 167 . . . . . . 7  |-  ( ph  ->  N #  0 )
2212, 13, 17, 21mulap0d 8677 . . . . . 6  |-  ( ph  ->  ( M  x.  N
) #  0 )
23 zapne 9391 . . . . . . 7  |-  ( ( ( M  x.  N
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( M  x.  N ) #  0  <->  ( M  x.  N )  =/=  0
) )
2411, 14, 23sylancl 413 . . . . . 6  |-  ( ph  ->  ( ( M  x.  N ) #  0  <->  ( M  x.  N )  =/=  0
) )
2522, 24mpbid 147 . . . . 5  |-  ( ph  ->  ( M  x.  N
)  =/=  0 )
26 nnabscl 11244 . . . . 5  |-  ( ( ( M  x.  N
)  e.  ZZ  /\  ( M  x.  N
)  =/=  0 )  ->  ( abs `  ( M  x.  N )
)  e.  NN )
2711, 25, 26syl2anc 411 . . . 4  |-  ( ph  ->  ( abs `  ( M  x.  N )
)  e.  NN )
2827nnzd 9438 . . 3  |-  ( ph  ->  ( abs `  ( M  x.  N )
)  e.  ZZ )
2912abscld 11325 . . . . 5  |-  ( ph  ->  ( abs `  M
)  e.  RR )
3013abscld 11325 . . . . 5  |-  ( ph  ->  ( abs `  N
)  e.  RR )
3112absge0d 11328 . . . . 5  |-  ( ph  ->  0  <_  ( abs `  M ) )
32 nnabscl 11244 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
3310, 18, 32syl2anc 411 . . . . . 6  |-  ( ph  ->  ( abs `  N
)  e.  NN )
3433nnge1d 9025 . . . . 5  |-  ( ph  ->  1  <_  ( abs `  N ) )
3529, 30, 31, 34lemulge11d 8956 . . . 4  |-  ( ph  ->  ( abs `  M
)  <_  ( ( abs `  M )  x.  ( abs `  N
) ) )
3612, 13absmuld 11338 . . . 4  |-  ( ph  ->  ( abs `  ( M  x.  N )
)  =  ( ( abs `  M )  x.  ( abs `  N
) ) )
3735, 36breqtrrd 4057 . . 3  |-  ( ph  ->  ( abs `  M
)  <_  ( abs `  ( M  x.  N
) ) )
38 eluz2 9598 . . 3  |-  ( ( abs `  ( M  x.  N ) )  e.  ( ZZ>= `  ( abs `  M ) )  <-> 
( ( abs `  M
)  e.  ZZ  /\  ( abs `  ( M  x.  N ) )  e.  ZZ  /\  ( abs `  M )  <_ 
( abs `  ( M  x.  N )
) ) )
399, 28, 37, 38syl3anbrc 1183 . 2  |-  ( ph  ->  ( abs `  ( M  x.  N )
)  e.  ( ZZ>= `  ( abs `  M ) ) )
40 1zzd 9344 . . . . 5  |-  ( ph  ->  1  e.  ZZ )
41 lgsdilem2.1 . . . . . . 7  |-  ( ph  ->  A  e.  ZZ )
42 lgsdilem2.6 . . . . . . . 8  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) )
4342lgsfcl3 15137 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  M  =/=  0 )  ->  F : NN --> ZZ )
4441, 3, 4, 43syl3anc 1249 . . . . . 6  |-  ( ph  ->  F : NN --> ZZ )
4544ffvelcdmda 5693 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  ZZ )
46 zmulcl 9370 . . . . . 6  |-  ( ( k  e.  ZZ  /\  v  e.  ZZ )  ->  ( k  x.  v
)  e.  ZZ )
4746adantl 277 . . . . 5  |-  ( (
ph  /\  ( k  e.  ZZ  /\  v  e.  ZZ ) )  -> 
( k  x.  v
)  e.  ZZ )
487, 40, 45, 47seqf 10535 . . . 4  |-  ( ph  ->  seq 1 (  x.  ,  F ) : NN --> ZZ )
4948, 6ffvelcdmd 5694 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 ( abs `  M
) )  e.  ZZ )
5049zcnd 9440 . 2  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 ( abs `  M
) )  e.  CC )
51 eleq1w 2254 . . . . 5  |-  ( n  =  k  ->  (
n  e.  Prime  <->  k  e.  Prime ) )
52 oveq2 5926 . . . . . 6  |-  ( n  =  k  ->  ( A  /L n )  =  ( A  /L k ) )
53 oveq1 5925 . . . . . 6  |-  ( n  =  k  ->  (
n  pCnt  M )  =  ( k  pCnt  M ) )
5452, 53oveq12d 5936 . . . . 5  |-  ( n  =  k  ->  (
( A  /L
n ) ^ (
n  pCnt  M )
)  =  ( ( A  /L k ) ^ ( k 
pCnt  M ) ) )
5551, 54ifbieq1d 3579 . . . 4  |-  ( n  =  k  ->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 )  =  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  M )
) ,  1 ) )
566peano2nnd 8997 . . . . 5  |-  ( ph  ->  ( ( abs `  M
)  +  1 )  e.  NN )
57 elfzuz 10087 . . . . 5  |-  ( k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N )
) )  ->  k  e.  ( ZZ>= `  ( ( abs `  M )  +  1 ) ) )
58 eluznn 9665 . . . . 5  |-  ( ( ( ( abs `  M
)  +  1 )  e.  NN  /\  k  e.  ( ZZ>= `  ( ( abs `  M )  +  1 ) ) )  ->  k  e.  NN )
5956, 57, 58syl2an 289 . . . 4  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  k  e.  NN )
6041ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  A  e.  ZZ )
61 prmz 12249 . . . . . . . 8  |-  ( k  e.  Prime  ->  k  e.  ZZ )
6261adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  k  e.  ZZ )
63 lgscl 15130 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  k  e.  ZZ )  ->  ( A  /L
k )  e.  ZZ )
6460, 62, 63syl2anc 411 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( A  /L k )  e.  ZZ )
65 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  k  e.  Prime )
663ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  M  e.  ZZ )
674ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  M  =/=  0
)
68 pczcl 12436 . . . . . . 7  |-  ( ( k  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 ) )  -> 
( k  pCnt  M
)  e.  NN0 )
6965, 66, 67, 68syl12anc 1247 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( k  pCnt  M )  e.  NN0 )
70 zexpcl 10625 . . . . . 6  |-  ( ( ( A  /L
k )  e.  ZZ  /\  ( k  pCnt  M
)  e.  NN0 )  ->  ( ( A  /L k ) ^
( k  pCnt  M
) )  e.  ZZ )
7164, 69, 70syl2anc 411 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( ( A  /L k ) ^ ( k  pCnt  M ) )  e.  ZZ )
72 1zzd 9344 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  -.  k  e. 
Prime )  ->  1  e.  ZZ )
73 prmdc 12268 . . . . . 6  |-  ( k  e.  NN  -> DECID  k  e.  Prime )
7459, 73syl 14 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  -> DECID 
k  e.  Prime )
7571, 72, 74ifcldadc 3586 . . . 4  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^ ( k 
pCnt  M ) ) ,  1 )  e.  ZZ )
7642, 55, 59, 75fvmptd3 5651 . . 3  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( F `  k )  =  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  M
) ) ,  1 ) )
77 zq 9691 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  QQ )
7866, 77syl 14 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  M  e.  QQ )
79 pcabs 12464 . . . . . . . . 9  |-  ( ( k  e.  Prime  /\  M  e.  QQ )  ->  (
k  pCnt  ( abs `  M ) )  =  ( k  pCnt  M
) )
8065, 78, 79syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( k  pCnt  ( abs `  M ) )  =  ( k 
pCnt  M ) )
81 elfzle1 10093 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N )
) )  ->  (
( abs `  M
)  +  1 )  <_  k )
8281adantl 277 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( ( abs `  M )  +  1 )  <_  k )
83 elfzelz 10091 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N )
) )  ->  k  e.  ZZ )
84 zltp1le 9371 . . . . . . . . . . . . . 14  |-  ( ( ( abs `  M
)  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( abs `  M
)  <  k  <->  ( ( abs `  M )  +  1 )  <_  k
) )
859, 83, 84syl2an 289 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( ( abs `  M )  <  k  <->  ( ( abs `  M
)  +  1 )  <_  k ) )
8682, 85mpbird 167 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( abs `  M
)  <  k )
87 zltnle 9363 . . . . . . . . . . . . 13  |-  ( ( ( abs `  M
)  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( abs `  M
)  <  k  <->  -.  k  <_  ( abs `  M
) ) )
889, 83, 87syl2an 289 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( ( abs `  M )  <  k  <->  -.  k  <_  ( abs `  M ) ) )
8986, 88mpbid 147 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  -.  k  <_  ( abs `  M ) )
9089adantr 276 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  -.  k  <_  ( abs `  M ) )
9166, 67, 5syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( abs `  M
)  e.  NN )
92 dvdsle 11986 . . . . . . . . . . 11  |-  ( ( k  e.  ZZ  /\  ( abs `  M )  e.  NN )  -> 
( k  ||  ( abs `  M )  -> 
k  <_  ( abs `  M ) ) )
9362, 91, 92syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( k  ||  ( abs `  M )  ->  k  <_  ( abs `  M ) ) )
9490, 93mtod 664 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  -.  k  ||  ( abs `  M ) )
95 pceq0 12460 . . . . . . . . . 10  |-  ( ( k  e.  Prime  /\  ( abs `  M )  e.  NN )  ->  (
( k  pCnt  ( abs `  M ) )  =  0  <->  -.  k  ||  ( abs `  M
) ) )
9665, 91, 95syl2anc 411 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( ( k 
pCnt  ( abs `  M
) )  =  0  <->  -.  k  ||  ( abs `  M ) ) )
9794, 96mpbird 167 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( k  pCnt  ( abs `  M ) )  =  0 )
9880, 97eqtr3d 2228 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( k  pCnt  M )  =  0 )
9998oveq2d 5934 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( ( A  /L k ) ^ ( k  pCnt  M ) )  =  ( ( A  /L
k ) ^ 0 ) )
10064zcnd 9440 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( A  /L k )  e.  CC )
101100exp0d 10738 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( ( A  /L k ) ^ 0 )  =  1 )
10299, 101eqtrd 2226 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( ( A  /L k ) ^ ( k  pCnt  M ) )  =  1 )
103102, 74ifeq1dadc 3587 . . . 4  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^ ( k 
pCnt  M ) ) ,  1 )  =  if ( k  e.  Prime ,  1 ,  1 ) )
104 ifiddc 3591 . . . . 5  |-  (DECID  k  e. 
Prime  ->  if ( k  e.  Prime ,  1 ,  1 )  =  1 )
10574, 104syl 14 . . . 4  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  if ( k  e.  Prime ,  1 ,  1 )  =  1 )
106103, 105eqtrd 2226 . . 3  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^ ( k 
pCnt  M ) ) ,  1 )  =  1 )
10776, 106eqtrd 2226 . 2  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( F `  k )  =  1 )
10844adantr 276 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  1 )
)  ->  F : NN
--> ZZ )
109 elnnuz 9629 . . . . . 6  |-  ( k  e.  NN  <->  k  e.  ( ZZ>= `  1 )
)
110109biimpri 133 . . . . 5  |-  ( k  e.  ( ZZ>= `  1
)  ->  k  e.  NN )
111110adantl 277 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  1 )
)  ->  k  e.  NN )
112108, 111ffvelcdmd 5694 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  1 )
)  ->  ( F `  k )  e.  ZZ )
113112zcnd 9440 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  1 )
)  ->  ( F `  k )  e.  CC )
114 mulcl 7999 . . 3  |-  ( ( k  e.  CC  /\  v  e.  CC )  ->  ( k  x.  v
)  e.  CC )
115114adantl 277 . 2  |-  ( (
ph  /\  ( k  e.  CC  /\  v  e.  CC ) )  -> 
( k  x.  v
)  e.  CC )
1162, 8, 39, 50, 107, 113, 115seq3id2 10597 1  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 ( abs `  M
) )  =  (  seq 1 (  x.  ,  F ) `  ( abs `  ( M  x.  N ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364    e. wcel 2164    =/= wne 2364   ifcif 3557   class class class wbr 4029    |-> cmpt 4090   -->wf 5250   ` cfv 5254  (class class class)co 5918   CCcc 7870   0cc0 7872   1c1 7873    + caddc 7875    x. cmul 7877    < clt 8054    <_ cle 8055   # cap 8600   NNcn 8982   NN0cn0 9240   ZZcz 9317   ZZ>=cuz 9592   QQcq 9684   ...cfz 10074    seqcseq 10518   ^cexp 10609   abscabs 11141    || cdvds 11930   Primecprime 12245    pCnt cpc 12422    /Lclgs 15113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-2o 6470  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-proddc 11694  df-dvds 11931  df-gcd 12080  df-prm 12246  df-phi 12349  df-pc 12423  df-lgs 15114
This theorem is referenced by:  lgsdi  15153
  Copyright terms: Public domain W3C validator