ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdilem2 Unicode version

Theorem lgsdilem2 14708
Description: Lemma for lgsdi 14709. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsdilem2.1  |-  ( ph  ->  A  e.  ZZ )
lgsdilem2.2  |-  ( ph  ->  M  e.  ZZ )
lgsdilem2.3  |-  ( ph  ->  N  e.  ZZ )
lgsdilem2.4  |-  ( ph  ->  M  =/=  0 )
lgsdilem2.5  |-  ( ph  ->  N  =/=  0 )
lgsdilem2.6  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) )
Assertion
Ref Expression
lgsdilem2  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 ( abs `  M
) )  =  (  seq 1 (  x.  ,  F ) `  ( abs `  ( M  x.  N ) ) ) )
Distinct variable groups:    n, M    A, n    n, N
Allowed substitution hints:    ph( n)    F( n)

Proof of Theorem lgsdilem2
Dummy variables  k  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulrid 7967 . . 3  |-  ( k  e.  CC  ->  (
k  x.  1 )  =  k )
21adantl 277 . 2  |-  ( (
ph  /\  k  e.  CC )  ->  ( k  x.  1 )  =  k )
3 lgsdilem2.2 . . . 4  |-  ( ph  ->  M  e.  ZZ )
4 lgsdilem2.4 . . . 4  |-  ( ph  ->  M  =/=  0 )
5 nnabscl 11122 . . . 4  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  M
)  e.  NN )
63, 4, 5syl2anc 411 . . 3  |-  ( ph  ->  ( abs `  M
)  e.  NN )
7 nnuz 9576 . . 3  |-  NN  =  ( ZZ>= `  1 )
86, 7eleqtrdi 2280 . 2  |-  ( ph  ->  ( abs `  M
)  e.  ( ZZ>= ` 
1 ) )
96nnzd 9387 . . 3  |-  ( ph  ->  ( abs `  M
)  e.  ZZ )
10 lgsdilem2.3 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
113, 10zmulcld 9394 . . . . 5  |-  ( ph  ->  ( M  x.  N
)  e.  ZZ )
123zcnd 9389 . . . . . . 7  |-  ( ph  ->  M  e.  CC )
1310zcnd 9389 . . . . . . 7  |-  ( ph  ->  N  e.  CC )
14 0z 9277 . . . . . . . . 9  |-  0  e.  ZZ
15 zapne 9340 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  ->  ( M #  0  <->  M  =/=  0 ) )
163, 14, 15sylancl 413 . . . . . . . 8  |-  ( ph  ->  ( M #  0  <->  M  =/=  0 ) )
174, 16mpbird 167 . . . . . . 7  |-  ( ph  ->  M #  0 )
18 lgsdilem2.5 . . . . . . . 8  |-  ( ph  ->  N  =/=  0 )
19 zapne 9340 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  ->  ( N #  0  <->  N  =/=  0 ) )
2010, 14, 19sylancl 413 . . . . . . . 8  |-  ( ph  ->  ( N #  0  <->  N  =/=  0 ) )
2118, 20mpbird 167 . . . . . . 7  |-  ( ph  ->  N #  0 )
2212, 13, 17, 21mulap0d 8628 . . . . . 6  |-  ( ph  ->  ( M  x.  N
) #  0 )
23 zapne 9340 . . . . . . 7  |-  ( ( ( M  x.  N
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( M  x.  N ) #  0  <->  ( M  x.  N )  =/=  0
) )
2411, 14, 23sylancl 413 . . . . . 6  |-  ( ph  ->  ( ( M  x.  N ) #  0  <->  ( M  x.  N )  =/=  0
) )
2522, 24mpbid 147 . . . . 5  |-  ( ph  ->  ( M  x.  N
)  =/=  0 )
26 nnabscl 11122 . . . . 5  |-  ( ( ( M  x.  N
)  e.  ZZ  /\  ( M  x.  N
)  =/=  0 )  ->  ( abs `  ( M  x.  N )
)  e.  NN )
2711, 25, 26syl2anc 411 . . . 4  |-  ( ph  ->  ( abs `  ( M  x.  N )
)  e.  NN )
2827nnzd 9387 . . 3  |-  ( ph  ->  ( abs `  ( M  x.  N )
)  e.  ZZ )
2912abscld 11203 . . . . 5  |-  ( ph  ->  ( abs `  M
)  e.  RR )
3013abscld 11203 . . . . 5  |-  ( ph  ->  ( abs `  N
)  e.  RR )
3112absge0d 11206 . . . . 5  |-  ( ph  ->  0  <_  ( abs `  M ) )
32 nnabscl 11122 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
3310, 18, 32syl2anc 411 . . . . . 6  |-  ( ph  ->  ( abs `  N
)  e.  NN )
3433nnge1d 8975 . . . . 5  |-  ( ph  ->  1  <_  ( abs `  N ) )
3529, 30, 31, 34lemulge11d 8907 . . . 4  |-  ( ph  ->  ( abs `  M
)  <_  ( ( abs `  M )  x.  ( abs `  N
) ) )
3612, 13absmuld 11216 . . . 4  |-  ( ph  ->  ( abs `  ( M  x.  N )
)  =  ( ( abs `  M )  x.  ( abs `  N
) ) )
3735, 36breqtrrd 4043 . . 3  |-  ( ph  ->  ( abs `  M
)  <_  ( abs `  ( M  x.  N
) ) )
38 eluz2 9547 . . 3  |-  ( ( abs `  ( M  x.  N ) )  e.  ( ZZ>= `  ( abs `  M ) )  <-> 
( ( abs `  M
)  e.  ZZ  /\  ( abs `  ( M  x.  N ) )  e.  ZZ  /\  ( abs `  M )  <_ 
( abs `  ( M  x.  N )
) ) )
399, 28, 37, 38syl3anbrc 1182 . 2  |-  ( ph  ->  ( abs `  ( M  x.  N )
)  e.  ( ZZ>= `  ( abs `  M ) ) )
40 1zzd 9293 . . . . 5  |-  ( ph  ->  1  e.  ZZ )
41 lgsdilem2.1 . . . . . . 7  |-  ( ph  ->  A  e.  ZZ )
42 lgsdilem2.6 . . . . . . . 8  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) )
4342lgsfcl3 14693 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  M  =/=  0 )  ->  F : NN --> ZZ )
4441, 3, 4, 43syl3anc 1248 . . . . . 6  |-  ( ph  ->  F : NN --> ZZ )
4544ffvelcdmda 5664 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  ZZ )
46 zmulcl 9319 . . . . . 6  |-  ( ( k  e.  ZZ  /\  v  e.  ZZ )  ->  ( k  x.  v
)  e.  ZZ )
4746adantl 277 . . . . 5  |-  ( (
ph  /\  ( k  e.  ZZ  /\  v  e.  ZZ ) )  -> 
( k  x.  v
)  e.  ZZ )
487, 40, 45, 47seqf 10474 . . . 4  |-  ( ph  ->  seq 1 (  x.  ,  F ) : NN --> ZZ )
4948, 6ffvelcdmd 5665 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 ( abs `  M
) )  e.  ZZ )
5049zcnd 9389 . 2  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 ( abs `  M
) )  e.  CC )
51 eleq1w 2248 . . . . 5  |-  ( n  =  k  ->  (
n  e.  Prime  <->  k  e.  Prime ) )
52 oveq2 5896 . . . . . 6  |-  ( n  =  k  ->  ( A  /L n )  =  ( A  /L k ) )
53 oveq1 5895 . . . . . 6  |-  ( n  =  k  ->  (
n  pCnt  M )  =  ( k  pCnt  M ) )
5452, 53oveq12d 5906 . . . . 5  |-  ( n  =  k  ->  (
( A  /L
n ) ^ (
n  pCnt  M )
)  =  ( ( A  /L k ) ^ ( k 
pCnt  M ) ) )
5551, 54ifbieq1d 3568 . . . 4  |-  ( n  =  k  ->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 )  =  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  M )
) ,  1 ) )
566peano2nnd 8947 . . . . 5  |-  ( ph  ->  ( ( abs `  M
)  +  1 )  e.  NN )
57 elfzuz 10034 . . . . 5  |-  ( k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N )
) )  ->  k  e.  ( ZZ>= `  ( ( abs `  M )  +  1 ) ) )
58 eluznn 9613 . . . . 5  |-  ( ( ( ( abs `  M
)  +  1 )  e.  NN  /\  k  e.  ( ZZ>= `  ( ( abs `  M )  +  1 ) ) )  ->  k  e.  NN )
5956, 57, 58syl2an 289 . . . 4  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  k  e.  NN )
6041ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  A  e.  ZZ )
61 prmz 12124 . . . . . . . 8  |-  ( k  e.  Prime  ->  k  e.  ZZ )
6261adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  k  e.  ZZ )
63 lgscl 14686 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  k  e.  ZZ )  ->  ( A  /L
k )  e.  ZZ )
6460, 62, 63syl2anc 411 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( A  /L k )  e.  ZZ )
65 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  k  e.  Prime )
663ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  M  e.  ZZ )
674ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  M  =/=  0
)
68 pczcl 12311 . . . . . . 7  |-  ( ( k  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 ) )  -> 
( k  pCnt  M
)  e.  NN0 )
6965, 66, 67, 68syl12anc 1246 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( k  pCnt  M )  e.  NN0 )
70 zexpcl 10548 . . . . . 6  |-  ( ( ( A  /L
k )  e.  ZZ  /\  ( k  pCnt  M
)  e.  NN0 )  ->  ( ( A  /L k ) ^
( k  pCnt  M
) )  e.  ZZ )
7164, 69, 70syl2anc 411 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( ( A  /L k ) ^ ( k  pCnt  M ) )  e.  ZZ )
72 1zzd 9293 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  -.  k  e. 
Prime )  ->  1  e.  ZZ )
73 prmdc 12143 . . . . . 6  |-  ( k  e.  NN  -> DECID  k  e.  Prime )
7459, 73syl 14 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  -> DECID 
k  e.  Prime )
7571, 72, 74ifcldadc 3575 . . . 4  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^ ( k 
pCnt  M ) ) ,  1 )  e.  ZZ )
7642, 55, 59, 75fvmptd3 5622 . . 3  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( F `  k )  =  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  M
) ) ,  1 ) )
77 zq 9639 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  QQ )
7866, 77syl 14 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  M  e.  QQ )
79 pcabs 12338 . . . . . . . . 9  |-  ( ( k  e.  Prime  /\  M  e.  QQ )  ->  (
k  pCnt  ( abs `  M ) )  =  ( k  pCnt  M
) )
8065, 78, 79syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( k  pCnt  ( abs `  M ) )  =  ( k 
pCnt  M ) )
81 elfzle1 10040 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N )
) )  ->  (
( abs `  M
)  +  1 )  <_  k )
8281adantl 277 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( ( abs `  M )  +  1 )  <_  k )
83 elfzelz 10038 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N )
) )  ->  k  e.  ZZ )
84 zltp1le 9320 . . . . . . . . . . . . . 14  |-  ( ( ( abs `  M
)  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( abs `  M
)  <  k  <->  ( ( abs `  M )  +  1 )  <_  k
) )
859, 83, 84syl2an 289 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( ( abs `  M )  <  k  <->  ( ( abs `  M
)  +  1 )  <_  k ) )
8682, 85mpbird 167 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( abs `  M
)  <  k )
87 zltnle 9312 . . . . . . . . . . . . 13  |-  ( ( ( abs `  M
)  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( abs `  M
)  <  k  <->  -.  k  <_  ( abs `  M
) ) )
889, 83, 87syl2an 289 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( ( abs `  M )  <  k  <->  -.  k  <_  ( abs `  M ) ) )
8986, 88mpbid 147 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  -.  k  <_  ( abs `  M ) )
9089adantr 276 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  -.  k  <_  ( abs `  M ) )
9166, 67, 5syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( abs `  M
)  e.  NN )
92 dvdsle 11863 . . . . . . . . . . 11  |-  ( ( k  e.  ZZ  /\  ( abs `  M )  e.  NN )  -> 
( k  ||  ( abs `  M )  -> 
k  <_  ( abs `  M ) ) )
9362, 91, 92syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( k  ||  ( abs `  M )  ->  k  <_  ( abs `  M ) ) )
9490, 93mtod 664 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  -.  k  ||  ( abs `  M ) )
95 pceq0 12334 . . . . . . . . . 10  |-  ( ( k  e.  Prime  /\  ( abs `  M )  e.  NN )  ->  (
( k  pCnt  ( abs `  M ) )  =  0  <->  -.  k  ||  ( abs `  M
) ) )
9665, 91, 95syl2anc 411 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( ( k 
pCnt  ( abs `  M
) )  =  0  <->  -.  k  ||  ( abs `  M ) ) )
9794, 96mpbird 167 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( k  pCnt  ( abs `  M ) )  =  0 )
9880, 97eqtr3d 2222 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( k  pCnt  M )  =  0 )
9998oveq2d 5904 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( ( A  /L k ) ^ ( k  pCnt  M ) )  =  ( ( A  /L
k ) ^ 0 ) )
10064zcnd 9389 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( A  /L k )  e.  CC )
101100exp0d 10661 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( ( A  /L k ) ^ 0 )  =  1 )
10299, 101eqtrd 2220 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( ( A  /L k ) ^ ( k  pCnt  M ) )  =  1 )
103102, 74ifeq1dadc 3576 . . . 4  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^ ( k 
pCnt  M ) ) ,  1 )  =  if ( k  e.  Prime ,  1 ,  1 ) )
104 ifiddc 3580 . . . . 5  |-  (DECID  k  e. 
Prime  ->  if ( k  e.  Prime ,  1 ,  1 )  =  1 )
10574, 104syl 14 . . . 4  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  if ( k  e.  Prime ,  1 ,  1 )  =  1 )
106103, 105eqtrd 2220 . . 3  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^ ( k 
pCnt  M ) ) ,  1 )  =  1 )
10776, 106eqtrd 2220 . 2  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( F `  k )  =  1 )
10844adantr 276 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  1 )
)  ->  F : NN
--> ZZ )
109 elnnuz 9577 . . . . . 6  |-  ( k  e.  NN  <->  k  e.  ( ZZ>= `  1 )
)
110109biimpri 133 . . . . 5  |-  ( k  e.  ( ZZ>= `  1
)  ->  k  e.  NN )
111110adantl 277 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  1 )
)  ->  k  e.  NN )
112108, 111ffvelcdmd 5665 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  1 )
)  ->  ( F `  k )  e.  ZZ )
113112zcnd 9389 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  1 )
)  ->  ( F `  k )  e.  CC )
114 mulcl 7951 . . 3  |-  ( ( k  e.  CC  /\  v  e.  CC )  ->  ( k  x.  v
)  e.  CC )
115114adantl 277 . 2  |-  ( (
ph  /\  ( k  e.  CC  /\  v  e.  CC ) )  -> 
( k  x.  v
)  e.  CC )
1162, 8, 39, 50, 107, 113, 115seq3id2 10522 1  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 ( abs `  M
) )  =  (  seq 1 (  x.  ,  F ) `  ( abs `  ( M  x.  N ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1363    e. wcel 2158    =/= wne 2357   ifcif 3546   class class class wbr 4015    |-> cmpt 4076   -->wf 5224   ` cfv 5228  (class class class)co 5888   CCcc 7822   0cc0 7824   1c1 7825    + caddc 7827    x. cmul 7829    < clt 8005    <_ cle 8006   # cap 8551   NNcn 8932   NN0cn0 9189   ZZcz 9266   ZZ>=cuz 9541   QQcq 9632   ...cfz 10021    seqcseq 10458   ^cexp 10532   abscabs 11019    || cdvds 11807   Primecprime 12120    pCnt cpc 12297    /Lclgs 14669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942  ax-arch 7943  ax-caucvg 7944
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-xor 1386  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-isom 5237  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-irdg 6384  df-frec 6405  df-1o 6430  df-2o 6431  df-oadd 6434  df-er 6548  df-en 6754  df-dom 6755  df-fin 6756  df-sup 6996  df-inf 6997  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643  df-inn 8933  df-2 8991  df-3 8992  df-4 8993  df-5 8994  df-6 8995  df-7 8996  df-8 8997  df-n0 9190  df-z 9267  df-uz 9542  df-q 9633  df-rp 9667  df-fz 10022  df-fzo 10156  df-fl 10283  df-mod 10336  df-seqfrec 10459  df-exp 10533  df-ihash 10769  df-cj 10864  df-re 10865  df-im 10866  df-rsqrt 11020  df-abs 11021  df-clim 11300  df-proddc 11572  df-dvds 11808  df-gcd 11957  df-prm 12121  df-phi 12224  df-pc 12298  df-lgs 14670
This theorem is referenced by:  lgsdi  14709
  Copyright terms: Public domain W3C validator