ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdilem2 Unicode version

Theorem lgsdilem2 13696
Description: Lemma for lgsdi 13697. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsdilem2.1  |-  ( ph  ->  A  e.  ZZ )
lgsdilem2.2  |-  ( ph  ->  M  e.  ZZ )
lgsdilem2.3  |-  ( ph  ->  N  e.  ZZ )
lgsdilem2.4  |-  ( ph  ->  M  =/=  0 )
lgsdilem2.5  |-  ( ph  ->  N  =/=  0 )
lgsdilem2.6  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) )
Assertion
Ref Expression
lgsdilem2  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 ( abs `  M
) )  =  (  seq 1 (  x.  ,  F ) `  ( abs `  ( M  x.  N ) ) ) )
Distinct variable groups:    n, M    A, n    n, N
Allowed substitution hints:    ph( n)    F( n)

Proof of Theorem lgsdilem2
Dummy variables  k  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulid1 7910 . . 3  |-  ( k  e.  CC  ->  (
k  x.  1 )  =  k )
21adantl 275 . 2  |-  ( (
ph  /\  k  e.  CC )  ->  ( k  x.  1 )  =  k )
3 lgsdilem2.2 . . . 4  |-  ( ph  ->  M  e.  ZZ )
4 lgsdilem2.4 . . . 4  |-  ( ph  ->  M  =/=  0 )
5 nnabscl 11057 . . . 4  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  M
)  e.  NN )
63, 4, 5syl2anc 409 . . 3  |-  ( ph  ->  ( abs `  M
)  e.  NN )
7 nnuz 9515 . . 3  |-  NN  =  ( ZZ>= `  1 )
86, 7eleqtrdi 2263 . 2  |-  ( ph  ->  ( abs `  M
)  e.  ( ZZ>= ` 
1 ) )
96nnzd 9326 . . 3  |-  ( ph  ->  ( abs `  M
)  e.  ZZ )
10 lgsdilem2.3 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
113, 10zmulcld 9333 . . . . 5  |-  ( ph  ->  ( M  x.  N
)  e.  ZZ )
123zcnd 9328 . . . . . . 7  |-  ( ph  ->  M  e.  CC )
1310zcnd 9328 . . . . . . 7  |-  ( ph  ->  N  e.  CC )
14 0z 9216 . . . . . . . . 9  |-  0  e.  ZZ
15 zapne 9279 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  ->  ( M #  0  <->  M  =/=  0 ) )
163, 14, 15sylancl 411 . . . . . . . 8  |-  ( ph  ->  ( M #  0  <->  M  =/=  0 ) )
174, 16mpbird 166 . . . . . . 7  |-  ( ph  ->  M #  0 )
18 lgsdilem2.5 . . . . . . . 8  |-  ( ph  ->  N  =/=  0 )
19 zapne 9279 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  ->  ( N #  0  <->  N  =/=  0 ) )
2010, 14, 19sylancl 411 . . . . . . . 8  |-  ( ph  ->  ( N #  0  <->  N  =/=  0 ) )
2118, 20mpbird 166 . . . . . . 7  |-  ( ph  ->  N #  0 )
2212, 13, 17, 21mulap0d 8569 . . . . . 6  |-  ( ph  ->  ( M  x.  N
) #  0 )
23 zapne 9279 . . . . . . 7  |-  ( ( ( M  x.  N
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( M  x.  N ) #  0  <->  ( M  x.  N )  =/=  0
) )
2411, 14, 23sylancl 411 . . . . . 6  |-  ( ph  ->  ( ( M  x.  N ) #  0  <->  ( M  x.  N )  =/=  0
) )
2522, 24mpbid 146 . . . . 5  |-  ( ph  ->  ( M  x.  N
)  =/=  0 )
26 nnabscl 11057 . . . . 5  |-  ( ( ( M  x.  N
)  e.  ZZ  /\  ( M  x.  N
)  =/=  0 )  ->  ( abs `  ( M  x.  N )
)  e.  NN )
2711, 25, 26syl2anc 409 . . . 4  |-  ( ph  ->  ( abs `  ( M  x.  N )
)  e.  NN )
2827nnzd 9326 . . 3  |-  ( ph  ->  ( abs `  ( M  x.  N )
)  e.  ZZ )
2912abscld 11138 . . . . 5  |-  ( ph  ->  ( abs `  M
)  e.  RR )
3013abscld 11138 . . . . 5  |-  ( ph  ->  ( abs `  N
)  e.  RR )
3112absge0d 11141 . . . . 5  |-  ( ph  ->  0  <_  ( abs `  M ) )
32 nnabscl 11057 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
3310, 18, 32syl2anc 409 . . . . . 6  |-  ( ph  ->  ( abs `  N
)  e.  NN )
3433nnge1d 8914 . . . . 5  |-  ( ph  ->  1  <_  ( abs `  N ) )
3529, 30, 31, 34lemulge11d 8846 . . . 4  |-  ( ph  ->  ( abs `  M
)  <_  ( ( abs `  M )  x.  ( abs `  N
) ) )
3612, 13absmuld 11151 . . . 4  |-  ( ph  ->  ( abs `  ( M  x.  N )
)  =  ( ( abs `  M )  x.  ( abs `  N
) ) )
3735, 36breqtrrd 4015 . . 3  |-  ( ph  ->  ( abs `  M
)  <_  ( abs `  ( M  x.  N
) ) )
38 eluz2 9486 . . 3  |-  ( ( abs `  ( M  x.  N ) )  e.  ( ZZ>= `  ( abs `  M ) )  <-> 
( ( abs `  M
)  e.  ZZ  /\  ( abs `  ( M  x.  N ) )  e.  ZZ  /\  ( abs `  M )  <_ 
( abs `  ( M  x.  N )
) ) )
399, 28, 37, 38syl3anbrc 1176 . 2  |-  ( ph  ->  ( abs `  ( M  x.  N )
)  e.  ( ZZ>= `  ( abs `  M ) ) )
40 1zzd 9232 . . . . 5  |-  ( ph  ->  1  e.  ZZ )
41 lgsdilem2.1 . . . . . . 7  |-  ( ph  ->  A  e.  ZZ )
42 lgsdilem2.6 . . . . . . . 8  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) )
4342lgsfcl3 13681 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  M  =/=  0 )  ->  F : NN --> ZZ )
4441, 3, 4, 43syl3anc 1233 . . . . . 6  |-  ( ph  ->  F : NN --> ZZ )
4544ffvelrnda 5629 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  ZZ )
46 zmulcl 9258 . . . . . 6  |-  ( ( k  e.  ZZ  /\  v  e.  ZZ )  ->  ( k  x.  v
)  e.  ZZ )
4746adantl 275 . . . . 5  |-  ( (
ph  /\  ( k  e.  ZZ  /\  v  e.  ZZ ) )  -> 
( k  x.  v
)  e.  ZZ )
487, 40, 45, 47seqf 10410 . . . 4  |-  ( ph  ->  seq 1 (  x.  ,  F ) : NN --> ZZ )
4948, 6ffvelrnd 5630 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 ( abs `  M
) )  e.  ZZ )
5049zcnd 9328 . 2  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 ( abs `  M
) )  e.  CC )
51 eleq1w 2231 . . . . 5  |-  ( n  =  k  ->  (
n  e.  Prime  <->  k  e.  Prime ) )
52 oveq2 5859 . . . . . 6  |-  ( n  =  k  ->  ( A  /L n )  =  ( A  /L k ) )
53 oveq1 5858 . . . . . 6  |-  ( n  =  k  ->  (
n  pCnt  M )  =  ( k  pCnt  M ) )
5452, 53oveq12d 5869 . . . . 5  |-  ( n  =  k  ->  (
( A  /L
n ) ^ (
n  pCnt  M )
)  =  ( ( A  /L k ) ^ ( k 
pCnt  M ) ) )
5551, 54ifbieq1d 3547 . . . 4  |-  ( n  =  k  ->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 )  =  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  M )
) ,  1 ) )
566peano2nnd 8886 . . . . 5  |-  ( ph  ->  ( ( abs `  M
)  +  1 )  e.  NN )
57 elfzuz 9970 . . . . 5  |-  ( k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N )
) )  ->  k  e.  ( ZZ>= `  ( ( abs `  M )  +  1 ) ) )
58 eluznn 9552 . . . . 5  |-  ( ( ( ( abs `  M
)  +  1 )  e.  NN  /\  k  e.  ( ZZ>= `  ( ( abs `  M )  +  1 ) ) )  ->  k  e.  NN )
5956, 57, 58syl2an 287 . . . 4  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  k  e.  NN )
6041ad2antrr 485 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  A  e.  ZZ )
61 prmz 12058 . . . . . . . 8  |-  ( k  e.  Prime  ->  k  e.  ZZ )
6261adantl 275 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  k  e.  ZZ )
63 lgscl 13674 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  k  e.  ZZ )  ->  ( A  /L
k )  e.  ZZ )
6460, 62, 63syl2anc 409 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( A  /L k )  e.  ZZ )
65 simpr 109 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  k  e.  Prime )
663ad2antrr 485 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  M  e.  ZZ )
674ad2antrr 485 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  M  =/=  0
)
68 pczcl 12245 . . . . . . 7  |-  ( ( k  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 ) )  -> 
( k  pCnt  M
)  e.  NN0 )
6965, 66, 67, 68syl12anc 1231 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( k  pCnt  M )  e.  NN0 )
70 zexpcl 10484 . . . . . 6  |-  ( ( ( A  /L
k )  e.  ZZ  /\  ( k  pCnt  M
)  e.  NN0 )  ->  ( ( A  /L k ) ^
( k  pCnt  M
) )  e.  ZZ )
7164, 69, 70syl2anc 409 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( ( A  /L k ) ^ ( k  pCnt  M ) )  e.  ZZ )
72 1zzd 9232 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  -.  k  e. 
Prime )  ->  1  e.  ZZ )
73 prmdc 12077 . . . . . 6  |-  ( k  e.  NN  -> DECID  k  e.  Prime )
7459, 73syl 14 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  -> DECID 
k  e.  Prime )
7571, 72, 74ifcldadc 3554 . . . 4  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^ ( k 
pCnt  M ) ) ,  1 )  e.  ZZ )
7642, 55, 59, 75fvmptd3 5587 . . 3  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( F `  k )  =  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  M
) ) ,  1 ) )
77 zq 9578 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  QQ )
7866, 77syl 14 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  M  e.  QQ )
79 pcabs 12272 . . . . . . . . 9  |-  ( ( k  e.  Prime  /\  M  e.  QQ )  ->  (
k  pCnt  ( abs `  M ) )  =  ( k  pCnt  M
) )
8065, 78, 79syl2anc 409 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( k  pCnt  ( abs `  M ) )  =  ( k 
pCnt  M ) )
81 elfzle1 9976 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N )
) )  ->  (
( abs `  M
)  +  1 )  <_  k )
8281adantl 275 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( ( abs `  M )  +  1 )  <_  k )
83 elfzelz 9974 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N )
) )  ->  k  e.  ZZ )
84 zltp1le 9259 . . . . . . . . . . . . . 14  |-  ( ( ( abs `  M
)  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( abs `  M
)  <  k  <->  ( ( abs `  M )  +  1 )  <_  k
) )
859, 83, 84syl2an 287 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( ( abs `  M )  <  k  <->  ( ( abs `  M
)  +  1 )  <_  k ) )
8682, 85mpbird 166 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( abs `  M
)  <  k )
87 zltnle 9251 . . . . . . . . . . . . 13  |-  ( ( ( abs `  M
)  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( abs `  M
)  <  k  <->  -.  k  <_  ( abs `  M
) ) )
889, 83, 87syl2an 287 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( ( abs `  M )  <  k  <->  -.  k  <_  ( abs `  M ) ) )
8986, 88mpbid 146 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  -.  k  <_  ( abs `  M ) )
9089adantr 274 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  -.  k  <_  ( abs `  M ) )
9166, 67, 5syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( abs `  M
)  e.  NN )
92 dvdsle 11797 . . . . . . . . . . 11  |-  ( ( k  e.  ZZ  /\  ( abs `  M )  e.  NN )  -> 
( k  ||  ( abs `  M )  -> 
k  <_  ( abs `  M ) ) )
9362, 91, 92syl2anc 409 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( k  ||  ( abs `  M )  ->  k  <_  ( abs `  M ) ) )
9490, 93mtod 658 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  -.  k  ||  ( abs `  M ) )
95 pceq0 12268 . . . . . . . . . 10  |-  ( ( k  e.  Prime  /\  ( abs `  M )  e.  NN )  ->  (
( k  pCnt  ( abs `  M ) )  =  0  <->  -.  k  ||  ( abs `  M
) ) )
9665, 91, 95syl2anc 409 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( ( k 
pCnt  ( abs `  M
) )  =  0  <->  -.  k  ||  ( abs `  M ) ) )
9794, 96mpbird 166 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( k  pCnt  ( abs `  M ) )  =  0 )
9880, 97eqtr3d 2205 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( k  pCnt  M )  =  0 )
9998oveq2d 5867 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( ( A  /L k ) ^ ( k  pCnt  M ) )  =  ( ( A  /L
k ) ^ 0 ) )
10064zcnd 9328 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( A  /L k )  e.  CC )
101100exp0d 10596 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( ( A  /L k ) ^ 0 )  =  1 )
10299, 101eqtrd 2203 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( ( A  /L k ) ^ ( k  pCnt  M ) )  =  1 )
103102, 74ifeq1dadc 3555 . . . 4  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^ ( k 
pCnt  M ) ) ,  1 )  =  if ( k  e.  Prime ,  1 ,  1 ) )
104 ifiddc 3558 . . . . 5  |-  (DECID  k  e. 
Prime  ->  if ( k  e.  Prime ,  1 ,  1 )  =  1 )
10574, 104syl 14 . . . 4  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  if ( k  e.  Prime ,  1 ,  1 )  =  1 )
106103, 105eqtrd 2203 . . 3  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^ ( k 
pCnt  M ) ) ,  1 )  =  1 )
10776, 106eqtrd 2203 . 2  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( F `  k )  =  1 )
10844adantr 274 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  1 )
)  ->  F : NN
--> ZZ )
109 elnnuz 9516 . . . . . 6  |-  ( k  e.  NN  <->  k  e.  ( ZZ>= `  1 )
)
110109biimpri 132 . . . . 5  |-  ( k  e.  ( ZZ>= `  1
)  ->  k  e.  NN )
111110adantl 275 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  1 )
)  ->  k  e.  NN )
112108, 111ffvelrnd 5630 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  1 )
)  ->  ( F `  k )  e.  ZZ )
113112zcnd 9328 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  1 )
)  ->  ( F `  k )  e.  CC )
114 mulcl 7894 . . 3  |-  ( ( k  e.  CC  /\  v  e.  CC )  ->  ( k  x.  v
)  e.  CC )
115114adantl 275 . 2  |-  ( (
ph  /\  ( k  e.  CC  /\  v  e.  CC ) )  -> 
( k  x.  v
)  e.  CC )
1162, 8, 39, 50, 107, 113, 115seq3id2 10458 1  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 ( abs `  M
) )  =  (  seq 1 (  x.  ,  F ) `  ( abs `  ( M  x.  N ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 829    = wceq 1348    e. wcel 2141    =/= wne 2340   ifcif 3525   class class class wbr 3987    |-> cmpt 4048   -->wf 5192   ` cfv 5196  (class class class)co 5851   CCcc 7765   0cc0 7767   1c1 7768    + caddc 7770    x. cmul 7772    < clt 7947    <_ cle 7948   # cap 8493   NNcn 8871   NN0cn0 9128   ZZcz 9205   ZZ>=cuz 9480   QQcq 9571   ...cfz 9958    seqcseq 10394   ^cexp 10468   abscabs 10954    || cdvds 11742   Primecprime 12054    pCnt cpc 12231    /Lclgs 13657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7858  ax-resscn 7859  ax-1cn 7860  ax-1re 7861  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-mulrcl 7866  ax-addcom 7867  ax-mulcom 7868  ax-addass 7869  ax-mulass 7870  ax-distr 7871  ax-i2m1 7872  ax-0lt1 7873  ax-1rid 7874  ax-0id 7875  ax-rnegex 7876  ax-precex 7877  ax-cnre 7878  ax-pre-ltirr 7879  ax-pre-ltwlin 7880  ax-pre-lttrn 7881  ax-pre-apti 7882  ax-pre-ltadd 7883  ax-pre-mulgt0 7884  ax-pre-mulext 7885  ax-arch 7886  ax-caucvg 7887
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-xor 1371  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-irdg 6347  df-frec 6368  df-1o 6393  df-2o 6394  df-oadd 6397  df-er 6511  df-en 6717  df-dom 6718  df-fin 6719  df-sup 6959  df-inf 6960  df-pnf 7949  df-mnf 7950  df-xr 7951  df-ltxr 7952  df-le 7953  df-sub 8085  df-neg 8086  df-reap 8487  df-ap 8494  df-div 8583  df-inn 8872  df-2 8930  df-3 8931  df-4 8932  df-5 8933  df-6 8934  df-7 8935  df-8 8936  df-n0 9129  df-z 9206  df-uz 9481  df-q 9572  df-rp 9604  df-fz 9959  df-fzo 10092  df-fl 10219  df-mod 10272  df-seqfrec 10395  df-exp 10469  df-ihash 10703  df-cj 10799  df-re 10800  df-im 10801  df-rsqrt 10955  df-abs 10956  df-clim 11235  df-proddc 11507  df-dvds 11743  df-gcd 11891  df-prm 12055  df-phi 12158  df-pc 12232  df-lgs 13658
This theorem is referenced by:  lgsdi  13697
  Copyright terms: Public domain W3C validator