ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdilem2 Unicode version

Theorem lgsdilem2 15628
Description: Lemma for lgsdi 15629. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsdilem2.1  |-  ( ph  ->  A  e.  ZZ )
lgsdilem2.2  |-  ( ph  ->  M  e.  ZZ )
lgsdilem2.3  |-  ( ph  ->  N  e.  ZZ )
lgsdilem2.4  |-  ( ph  ->  M  =/=  0 )
lgsdilem2.5  |-  ( ph  ->  N  =/=  0 )
lgsdilem2.6  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) )
Assertion
Ref Expression
lgsdilem2  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 ( abs `  M
) )  =  (  seq 1 (  x.  ,  F ) `  ( abs `  ( M  x.  N ) ) ) )
Distinct variable groups:    n, M    A, n    n, N
Allowed substitution hints:    ph( n)    F( n)

Proof of Theorem lgsdilem2
Dummy variables  k  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulrid 8104 . . 3  |-  ( k  e.  CC  ->  (
k  x.  1 )  =  k )
21adantl 277 . 2  |-  ( (
ph  /\  k  e.  CC )  ->  ( k  x.  1 )  =  k )
3 lgsdilem2.2 . . . 4  |-  ( ph  ->  M  e.  ZZ )
4 lgsdilem2.4 . . . 4  |-  ( ph  ->  M  =/=  0 )
5 nnabscl 11526 . . . 4  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  M
)  e.  NN )
63, 4, 5syl2anc 411 . . 3  |-  ( ph  ->  ( abs `  M
)  e.  NN )
7 nnuz 9719 . . 3  |-  NN  =  ( ZZ>= `  1 )
86, 7eleqtrdi 2300 . 2  |-  ( ph  ->  ( abs `  M
)  e.  ( ZZ>= ` 
1 ) )
96nnzd 9529 . . 3  |-  ( ph  ->  ( abs `  M
)  e.  ZZ )
10 lgsdilem2.3 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
113, 10zmulcld 9536 . . . . 5  |-  ( ph  ->  ( M  x.  N
)  e.  ZZ )
123zcnd 9531 . . . . . . 7  |-  ( ph  ->  M  e.  CC )
1310zcnd 9531 . . . . . . 7  |-  ( ph  ->  N  e.  CC )
14 0z 9418 . . . . . . . . 9  |-  0  e.  ZZ
15 zapne 9482 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  ->  ( M #  0  <->  M  =/=  0 ) )
163, 14, 15sylancl 413 . . . . . . . 8  |-  ( ph  ->  ( M #  0  <->  M  =/=  0 ) )
174, 16mpbird 167 . . . . . . 7  |-  ( ph  ->  M #  0 )
18 lgsdilem2.5 . . . . . . . 8  |-  ( ph  ->  N  =/=  0 )
19 zapne 9482 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  ->  ( N #  0  <->  N  =/=  0 ) )
2010, 14, 19sylancl 413 . . . . . . . 8  |-  ( ph  ->  ( N #  0  <->  N  =/=  0 ) )
2118, 20mpbird 167 . . . . . . 7  |-  ( ph  ->  N #  0 )
2212, 13, 17, 21mulap0d 8766 . . . . . 6  |-  ( ph  ->  ( M  x.  N
) #  0 )
23 zapne 9482 . . . . . . 7  |-  ( ( ( M  x.  N
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( M  x.  N ) #  0  <->  ( M  x.  N )  =/=  0
) )
2411, 14, 23sylancl 413 . . . . . 6  |-  ( ph  ->  ( ( M  x.  N ) #  0  <->  ( M  x.  N )  =/=  0
) )
2522, 24mpbid 147 . . . . 5  |-  ( ph  ->  ( M  x.  N
)  =/=  0 )
26 nnabscl 11526 . . . . 5  |-  ( ( ( M  x.  N
)  e.  ZZ  /\  ( M  x.  N
)  =/=  0 )  ->  ( abs `  ( M  x.  N )
)  e.  NN )
2711, 25, 26syl2anc 411 . . . 4  |-  ( ph  ->  ( abs `  ( M  x.  N )
)  e.  NN )
2827nnzd 9529 . . 3  |-  ( ph  ->  ( abs `  ( M  x.  N )
)  e.  ZZ )
2912abscld 11607 . . . . 5  |-  ( ph  ->  ( abs `  M
)  e.  RR )
3013abscld 11607 . . . . 5  |-  ( ph  ->  ( abs `  N
)  e.  RR )
3112absge0d 11610 . . . . 5  |-  ( ph  ->  0  <_  ( abs `  M ) )
32 nnabscl 11526 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
3310, 18, 32syl2anc 411 . . . . . 6  |-  ( ph  ->  ( abs `  N
)  e.  NN )
3433nnge1d 9114 . . . . 5  |-  ( ph  ->  1  <_  ( abs `  N ) )
3529, 30, 31, 34lemulge11d 9045 . . . 4  |-  ( ph  ->  ( abs `  M
)  <_  ( ( abs `  M )  x.  ( abs `  N
) ) )
3612, 13absmuld 11620 . . . 4  |-  ( ph  ->  ( abs `  ( M  x.  N )
)  =  ( ( abs `  M )  x.  ( abs `  N
) ) )
3735, 36breqtrrd 4087 . . 3  |-  ( ph  ->  ( abs `  M
)  <_  ( abs `  ( M  x.  N
) ) )
38 eluz2 9689 . . 3  |-  ( ( abs `  ( M  x.  N ) )  e.  ( ZZ>= `  ( abs `  M ) )  <-> 
( ( abs `  M
)  e.  ZZ  /\  ( abs `  ( M  x.  N ) )  e.  ZZ  /\  ( abs `  M )  <_ 
( abs `  ( M  x.  N )
) ) )
399, 28, 37, 38syl3anbrc 1184 . 2  |-  ( ph  ->  ( abs `  ( M  x.  N )
)  e.  ( ZZ>= `  ( abs `  M ) ) )
40 1zzd 9434 . . . . 5  |-  ( ph  ->  1  e.  ZZ )
41 lgsdilem2.1 . . . . . . 7  |-  ( ph  ->  A  e.  ZZ )
42 lgsdilem2.6 . . . . . . . 8  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) )
4342lgsfcl3 15613 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  M  =/=  0 )  ->  F : NN --> ZZ )
4441, 3, 4, 43syl3anc 1250 . . . . . 6  |-  ( ph  ->  F : NN --> ZZ )
4544ffvelcdmda 5738 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  ZZ )
46 zmulcl 9461 . . . . . 6  |-  ( ( k  e.  ZZ  /\  v  e.  ZZ )  ->  ( k  x.  v
)  e.  ZZ )
4746adantl 277 . . . . 5  |-  ( (
ph  /\  ( k  e.  ZZ  /\  v  e.  ZZ ) )  -> 
( k  x.  v
)  e.  ZZ )
487, 40, 45, 47seqf 10646 . . . 4  |-  ( ph  ->  seq 1 (  x.  ,  F ) : NN --> ZZ )
4948, 6ffvelcdmd 5739 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 ( abs `  M
) )  e.  ZZ )
5049zcnd 9531 . 2  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 ( abs `  M
) )  e.  CC )
51 eleq1w 2268 . . . . 5  |-  ( n  =  k  ->  (
n  e.  Prime  <->  k  e.  Prime ) )
52 oveq2 5975 . . . . . 6  |-  ( n  =  k  ->  ( A  /L n )  =  ( A  /L k ) )
53 oveq1 5974 . . . . . 6  |-  ( n  =  k  ->  (
n  pCnt  M )  =  ( k  pCnt  M ) )
5452, 53oveq12d 5985 . . . . 5  |-  ( n  =  k  ->  (
( A  /L
n ) ^ (
n  pCnt  M )
)  =  ( ( A  /L k ) ^ ( k 
pCnt  M ) ) )
5551, 54ifbieq1d 3602 . . . 4  |-  ( n  =  k  ->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 )  =  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  M )
) ,  1 ) )
566peano2nnd 9086 . . . . 5  |-  ( ph  ->  ( ( abs `  M
)  +  1 )  e.  NN )
57 elfzuz 10178 . . . . 5  |-  ( k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N )
) )  ->  k  e.  ( ZZ>= `  ( ( abs `  M )  +  1 ) ) )
58 eluznn 9756 . . . . 5  |-  ( ( ( ( abs `  M
)  +  1 )  e.  NN  /\  k  e.  ( ZZ>= `  ( ( abs `  M )  +  1 ) ) )  ->  k  e.  NN )
5956, 57, 58syl2an 289 . . . 4  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  k  e.  NN )
6041ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  A  e.  ZZ )
61 prmz 12548 . . . . . . . 8  |-  ( k  e.  Prime  ->  k  e.  ZZ )
6261adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  k  e.  ZZ )
63 lgscl 15606 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  k  e.  ZZ )  ->  ( A  /L
k )  e.  ZZ )
6460, 62, 63syl2anc 411 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( A  /L k )  e.  ZZ )
65 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  k  e.  Prime )
663ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  M  e.  ZZ )
674ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  M  =/=  0
)
68 pczcl 12736 . . . . . . 7  |-  ( ( k  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 ) )  -> 
( k  pCnt  M
)  e.  NN0 )
6965, 66, 67, 68syl12anc 1248 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( k  pCnt  M )  e.  NN0 )
70 zexpcl 10736 . . . . . 6  |-  ( ( ( A  /L
k )  e.  ZZ  /\  ( k  pCnt  M
)  e.  NN0 )  ->  ( ( A  /L k ) ^
( k  pCnt  M
) )  e.  ZZ )
7164, 69, 70syl2anc 411 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( ( A  /L k ) ^ ( k  pCnt  M ) )  e.  ZZ )
72 1zzd 9434 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  -.  k  e. 
Prime )  ->  1  e.  ZZ )
73 prmdc 12567 . . . . . 6  |-  ( k  e.  NN  -> DECID  k  e.  Prime )
7459, 73syl 14 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  -> DECID 
k  e.  Prime )
7571, 72, 74ifcldadc 3609 . . . 4  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^ ( k 
pCnt  M ) ) ,  1 )  e.  ZZ )
7642, 55, 59, 75fvmptd3 5696 . . 3  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( F `  k )  =  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  M
) ) ,  1 ) )
77 zq 9782 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  QQ )
7866, 77syl 14 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  M  e.  QQ )
79 pcabs 12764 . . . . . . . . 9  |-  ( ( k  e.  Prime  /\  M  e.  QQ )  ->  (
k  pCnt  ( abs `  M ) )  =  ( k  pCnt  M
) )
8065, 78, 79syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( k  pCnt  ( abs `  M ) )  =  ( k 
pCnt  M ) )
81 elfzle1 10184 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N )
) )  ->  (
( abs `  M
)  +  1 )  <_  k )
8281adantl 277 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( ( abs `  M )  +  1 )  <_  k )
83 elfzelz 10182 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N )
) )  ->  k  e.  ZZ )
84 zltp1le 9462 . . . . . . . . . . . . . 14  |-  ( ( ( abs `  M
)  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( abs `  M
)  <  k  <->  ( ( abs `  M )  +  1 )  <_  k
) )
859, 83, 84syl2an 289 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( ( abs `  M )  <  k  <->  ( ( abs `  M
)  +  1 )  <_  k ) )
8682, 85mpbird 167 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( abs `  M
)  <  k )
87 zltnle 9453 . . . . . . . . . . . . 13  |-  ( ( ( abs `  M
)  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( abs `  M
)  <  k  <->  -.  k  <_  ( abs `  M
) ) )
889, 83, 87syl2an 289 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( ( abs `  M )  <  k  <->  -.  k  <_  ( abs `  M ) ) )
8986, 88mpbid 147 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  -.  k  <_  ( abs `  M ) )
9089adantr 276 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  -.  k  <_  ( abs `  M ) )
9166, 67, 5syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( abs `  M
)  e.  NN )
92 dvdsle 12270 . . . . . . . . . . 11  |-  ( ( k  e.  ZZ  /\  ( abs `  M )  e.  NN )  -> 
( k  ||  ( abs `  M )  -> 
k  <_  ( abs `  M ) ) )
9362, 91, 92syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( k  ||  ( abs `  M )  ->  k  <_  ( abs `  M ) ) )
9490, 93mtod 665 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  -.  k  ||  ( abs `  M ) )
95 pceq0 12760 . . . . . . . . . 10  |-  ( ( k  e.  Prime  /\  ( abs `  M )  e.  NN )  ->  (
( k  pCnt  ( abs `  M ) )  =  0  <->  -.  k  ||  ( abs `  M
) ) )
9665, 91, 95syl2anc 411 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( ( k 
pCnt  ( abs `  M
) )  =  0  <->  -.  k  ||  ( abs `  M ) ) )
9794, 96mpbird 167 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( k  pCnt  ( abs `  M ) )  =  0 )
9880, 97eqtr3d 2242 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( k  pCnt  M )  =  0 )
9998oveq2d 5983 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( ( A  /L k ) ^ ( k  pCnt  M ) )  =  ( ( A  /L
k ) ^ 0 ) )
10064zcnd 9531 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( A  /L k )  e.  CC )
101100exp0d 10849 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( ( A  /L k ) ^ 0 )  =  1 )
10299, 101eqtrd 2240 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( ( A  /L k ) ^ ( k  pCnt  M ) )  =  1 )
103102, 74ifeq1dadc 3610 . . . 4  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^ ( k 
pCnt  M ) ) ,  1 )  =  if ( k  e.  Prime ,  1 ,  1 ) )
104 ifiddc 3615 . . . . 5  |-  (DECID  k  e. 
Prime  ->  if ( k  e.  Prime ,  1 ,  1 )  =  1 )
10574, 104syl 14 . . . 4  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  if ( k  e.  Prime ,  1 ,  1 )  =  1 )
106103, 105eqtrd 2240 . . 3  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^ ( k 
pCnt  M ) ) ,  1 )  =  1 )
10776, 106eqtrd 2240 . 2  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( F `  k )  =  1 )
10844adantr 276 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  1 )
)  ->  F : NN
--> ZZ )
109 elnnuz 9720 . . . . . 6  |-  ( k  e.  NN  <->  k  e.  ( ZZ>= `  1 )
)
110109biimpri 133 . . . . 5  |-  ( k  e.  ( ZZ>= `  1
)  ->  k  e.  NN )
111110adantl 277 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  1 )
)  ->  k  e.  NN )
112108, 111ffvelcdmd 5739 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  1 )
)  ->  ( F `  k )  e.  ZZ )
113112zcnd 9531 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  1 )
)  ->  ( F `  k )  e.  CC )
114 mulcl 8087 . . 3  |-  ( ( k  e.  CC  /\  v  e.  CC )  ->  ( k  x.  v
)  e.  CC )
115114adantl 277 . 2  |-  ( (
ph  /\  ( k  e.  CC  /\  v  e.  CC ) )  -> 
( k  x.  v
)  e.  CC )
1162, 8, 39, 50, 107, 113, 115seq3id2 10708 1  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 ( abs `  M
) )  =  (  seq 1 (  x.  ,  F ) `  ( abs `  ( M  x.  N ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 836    = wceq 1373    e. wcel 2178    =/= wne 2378   ifcif 3579   class class class wbr 4059    |-> cmpt 4121   -->wf 5286   ` cfv 5290  (class class class)co 5967   CCcc 7958   0cc0 7960   1c1 7961    + caddc 7963    x. cmul 7965    < clt 8142    <_ cle 8143   # cap 8689   NNcn 9071   NN0cn0 9330   ZZcz 9407   ZZ>=cuz 9683   QQcq 9775   ...cfz 10165    seqcseq 10629   ^cexp 10720   abscabs 11423    || cdvds 12213   Primecprime 12544    pCnt cpc 12722    /Lclgs 15589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-2o 6526  df-oadd 6529  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-7 9135  df-8 9136  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-ihash 10958  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-proddc 11977  df-dvds 12214  df-gcd 12390  df-prm 12545  df-phi 12648  df-pc 12723  df-lgs 15590
This theorem is referenced by:  lgsdi  15629
  Copyright terms: Public domain W3C validator