ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddpnf1 Unicode version

Theorem xaddpnf1 10003
Description: Addition of positive infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddpnf1  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( A +e +oo )  = +oo )

Proof of Theorem xaddpnf1
StepHypRef Expression
1 pnfxr 8160 . . . 4  |- +oo  e.  RR*
2 xaddval 10002 . . . 4  |-  ( ( A  e.  RR*  /\ +oo  e.  RR* )  ->  ( A +e +oo )  =  if ( A  = +oo ,  if ( +oo  = -oo , 
0 , +oo ) ,  if ( A  = -oo ,  if ( +oo  = +oo , 
0 , -oo ) ,  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo ,  ( A  + +oo ) ) ) ) ) )
31, 2mpan2 425 . . 3  |-  ( A  e.  RR*  ->  ( A +e +oo )  =  if ( A  = +oo ,  if ( +oo  = -oo , 
0 , +oo ) ,  if ( A  = -oo ,  if ( +oo  = +oo , 
0 , -oo ) ,  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo ,  ( A  + +oo ) ) ) ) ) )
43adantr 276 . 2  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( A +e +oo )  =  if ( A  = +oo ,  if ( +oo  = -oo , 
0 , +oo ) ,  if ( A  = -oo ,  if ( +oo  = +oo , 
0 , -oo ) ,  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo ,  ( A  + +oo ) ) ) ) ) )
5 pnfnemnf 8162 . . . . 5  |- +oo  =/= -oo
6 ifnefalse 3590 . . . . 5  |-  ( +oo  =/= -oo  ->  if ( +oo  = -oo ,  0 , +oo )  = +oo )
75, 6mp1i 10 . . . 4  |-  ( A  =/= -oo  ->  if ( +oo  = -oo , 
0 , +oo )  = +oo )
8 ifnefalse 3590 . . . . 5  |-  ( A  =/= -oo  ->  if ( A  = -oo ,  if ( +oo  = +oo ,  0 , -oo ) ,  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo ,  ( A  + +oo )
) ) )  =  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo ,  ( A  + +oo ) ) ) )
9 eqid 2207 . . . . . 6  |- +oo  = +oo
109iftruei 3585 . . . . 5  |-  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo , 
( A  + +oo ) ) )  = +oo
118, 10eqtrdi 2256 . . . 4  |-  ( A  =/= -oo  ->  if ( A  = -oo ,  if ( +oo  = +oo ,  0 , -oo ) ,  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo ,  ( A  + +oo )
) ) )  = +oo )
127, 11ifeq12d 3599 . . 3  |-  ( A  =/= -oo  ->  if ( A  = +oo ,  if ( +oo  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( +oo  = +oo , 
0 , -oo ) ,  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo ,  ( A  + +oo ) ) ) ) )  =  if ( A  = +oo , +oo , +oo ) )
13 xrpnfdc 9999 . . . 4  |-  ( A  e.  RR*  -> DECID  A  = +oo )
14 ifiddc 3615 . . . 4  |-  (DECID  A  = +oo  ->  if ( A  = +oo , +oo , +oo )  = +oo )
1513, 14syl 14 . . 3  |-  ( A  e.  RR*  ->  if ( A  = +oo , +oo , +oo )  = +oo )
1612, 15sylan9eqr 2262 . 2  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  if ( A  = +oo ,  if ( +oo  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( +oo  = +oo , 
0 , -oo ) ,  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo ,  ( A  + +oo ) ) ) ) )  = +oo )
174, 16eqtrd 2240 1  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( A +e +oo )  = +oo )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 836    = wceq 1373    e. wcel 2178    =/= wne 2378   ifcif 3579  (class class class)co 5967   0cc0 7960    + caddc 7963   +oocpnf 8139   -oocmnf 8140   RR*cxr 8141   +ecxad 9927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057  ax-rnegex 8069
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-xadd 9930
This theorem is referenced by:  xaddnemnf  10014  xaddcom  10018  xnn0xadd0  10024  xnegdi  10025  xaddass  10026  xleadd1a  10030  xlt2add  10037  xsubge0  10038  xposdif  10039  xlesubadd  10040  xrbdtri  11702  isxmet2d  14935
  Copyright terms: Public domain W3C validator