ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddpnf1 Unicode version

Theorem xaddpnf1 9912
Description: Addition of positive infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddpnf1  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( A +e +oo )  = +oo )

Proof of Theorem xaddpnf1
StepHypRef Expression
1 pnfxr 8072 . . . 4  |- +oo  e.  RR*
2 xaddval 9911 . . . 4  |-  ( ( A  e.  RR*  /\ +oo  e.  RR* )  ->  ( A +e +oo )  =  if ( A  = +oo ,  if ( +oo  = -oo , 
0 , +oo ) ,  if ( A  = -oo ,  if ( +oo  = +oo , 
0 , -oo ) ,  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo ,  ( A  + +oo ) ) ) ) ) )
31, 2mpan2 425 . . 3  |-  ( A  e.  RR*  ->  ( A +e +oo )  =  if ( A  = +oo ,  if ( +oo  = -oo , 
0 , +oo ) ,  if ( A  = -oo ,  if ( +oo  = +oo , 
0 , -oo ) ,  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo ,  ( A  + +oo ) ) ) ) ) )
43adantr 276 . 2  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( A +e +oo )  =  if ( A  = +oo ,  if ( +oo  = -oo , 
0 , +oo ) ,  if ( A  = -oo ,  if ( +oo  = +oo , 
0 , -oo ) ,  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo ,  ( A  + +oo ) ) ) ) ) )
5 pnfnemnf 8074 . . . . 5  |- +oo  =/= -oo
6 ifnefalse 3568 . . . . 5  |-  ( +oo  =/= -oo  ->  if ( +oo  = -oo ,  0 , +oo )  = +oo )
75, 6mp1i 10 . . . 4  |-  ( A  =/= -oo  ->  if ( +oo  = -oo , 
0 , +oo )  = +oo )
8 ifnefalse 3568 . . . . 5  |-  ( A  =/= -oo  ->  if ( A  = -oo ,  if ( +oo  = +oo ,  0 , -oo ) ,  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo ,  ( A  + +oo )
) ) )  =  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo ,  ( A  + +oo ) ) ) )
9 eqid 2193 . . . . . 6  |- +oo  = +oo
109iftruei 3563 . . . . 5  |-  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo , 
( A  + +oo ) ) )  = +oo
118, 10eqtrdi 2242 . . . 4  |-  ( A  =/= -oo  ->  if ( A  = -oo ,  if ( +oo  = +oo ,  0 , -oo ) ,  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo ,  ( A  + +oo )
) ) )  = +oo )
127, 11ifeq12d 3576 . . 3  |-  ( A  =/= -oo  ->  if ( A  = +oo ,  if ( +oo  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( +oo  = +oo , 
0 , -oo ) ,  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo ,  ( A  + +oo ) ) ) ) )  =  if ( A  = +oo , +oo , +oo ) )
13 xrpnfdc 9908 . . . 4  |-  ( A  e.  RR*  -> DECID  A  = +oo )
14 ifiddc 3591 . . . 4  |-  (DECID  A  = +oo  ->  if ( A  = +oo , +oo , +oo )  = +oo )
1513, 14syl 14 . . 3  |-  ( A  e.  RR*  ->  if ( A  = +oo , +oo , +oo )  = +oo )
1612, 15sylan9eqr 2248 . 2  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  if ( A  = +oo ,  if ( +oo  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( +oo  = +oo , 
0 , -oo ) ,  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo ,  ( A  + +oo ) ) ) ) )  = +oo )
174, 16eqtrd 2226 1  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( A +e +oo )  = +oo )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 835    = wceq 1364    e. wcel 2164    =/= wne 2364   ifcif 3557  (class class class)co 5918   0cc0 7872    + caddc 7875   +oocpnf 8051   -oocmnf 8052   RR*cxr 8053   +ecxad 9836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969  ax-rnegex 7981
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-xadd 9839
This theorem is referenced by:  xaddnemnf  9923  xaddcom  9927  xnn0xadd0  9933  xnegdi  9934  xaddass  9935  xleadd1a  9939  xlt2add  9946  xsubge0  9947  xposdif  9948  xlesubadd  9949  xrbdtri  11419  isxmet2d  14516
  Copyright terms: Public domain W3C validator