ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddpnf1 Unicode version

Theorem xaddpnf1 9848
Description: Addition of positive infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddpnf1  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( A +e +oo )  = +oo )

Proof of Theorem xaddpnf1
StepHypRef Expression
1 pnfxr 8012 . . . 4  |- +oo  e.  RR*
2 xaddval 9847 . . . 4  |-  ( ( A  e.  RR*  /\ +oo  e.  RR* )  ->  ( A +e +oo )  =  if ( A  = +oo ,  if ( +oo  = -oo , 
0 , +oo ) ,  if ( A  = -oo ,  if ( +oo  = +oo , 
0 , -oo ) ,  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo ,  ( A  + +oo ) ) ) ) ) )
31, 2mpan2 425 . . 3  |-  ( A  e.  RR*  ->  ( A +e +oo )  =  if ( A  = +oo ,  if ( +oo  = -oo , 
0 , +oo ) ,  if ( A  = -oo ,  if ( +oo  = +oo , 
0 , -oo ) ,  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo ,  ( A  + +oo ) ) ) ) ) )
43adantr 276 . 2  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( A +e +oo )  =  if ( A  = +oo ,  if ( +oo  = -oo , 
0 , +oo ) ,  if ( A  = -oo ,  if ( +oo  = +oo , 
0 , -oo ) ,  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo ,  ( A  + +oo ) ) ) ) ) )
5 pnfnemnf 8014 . . . . 5  |- +oo  =/= -oo
6 ifnefalse 3547 . . . . 5  |-  ( +oo  =/= -oo  ->  if ( +oo  = -oo ,  0 , +oo )  = +oo )
75, 6mp1i 10 . . . 4  |-  ( A  =/= -oo  ->  if ( +oo  = -oo , 
0 , +oo )  = +oo )
8 ifnefalse 3547 . . . . 5  |-  ( A  =/= -oo  ->  if ( A  = -oo ,  if ( +oo  = +oo ,  0 , -oo ) ,  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo ,  ( A  + +oo )
) ) )  =  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo ,  ( A  + +oo ) ) ) )
9 eqid 2177 . . . . . 6  |- +oo  = +oo
109iftruei 3542 . . . . 5  |-  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo , 
( A  + +oo ) ) )  = +oo
118, 10eqtrdi 2226 . . . 4  |-  ( A  =/= -oo  ->  if ( A  = -oo ,  if ( +oo  = +oo ,  0 , -oo ) ,  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo ,  ( A  + +oo )
) ) )  = +oo )
127, 11ifeq12d 3555 . . 3  |-  ( A  =/= -oo  ->  if ( A  = +oo ,  if ( +oo  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( +oo  = +oo , 
0 , -oo ) ,  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo ,  ( A  + +oo ) ) ) ) )  =  if ( A  = +oo , +oo , +oo ) )
13 xrpnfdc 9844 . . . 4  |-  ( A  e.  RR*  -> DECID  A  = +oo )
14 ifiddc 3570 . . . 4  |-  (DECID  A  = +oo  ->  if ( A  = +oo , +oo , +oo )  = +oo )
1513, 14syl 14 . . 3  |-  ( A  e.  RR*  ->  if ( A  = +oo , +oo , +oo )  = +oo )
1612, 15sylan9eqr 2232 . 2  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  if ( A  = +oo ,  if ( +oo  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( +oo  = +oo , 
0 , -oo ) ,  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo ,  ( A  + +oo ) ) ) ) )  = +oo )
174, 16eqtrd 2210 1  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( A +e +oo )  = +oo )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 834    = wceq 1353    e. wcel 2148    =/= wne 2347   ifcif 3536  (class class class)co 5877   0cc0 7813    + caddc 7816   +oocpnf 7991   -oocmnf 7992   RR*cxr 7993   +ecxad 9772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910  ax-rnegex 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-xadd 9775
This theorem is referenced by:  xaddnemnf  9859  xaddcom  9863  xnn0xadd0  9869  xnegdi  9870  xaddass  9871  xleadd1a  9875  xlt2add  9882  xsubge0  9883  xposdif  9884  xlesubadd  9885  xrbdtri  11286  isxmet2d  13933
  Copyright terms: Public domain W3C validator