ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prod1dc Unicode version

Theorem prod1dc 11527
Description: Any product of one over a valid set is one. (Contributed by Scott Fenton, 7-Dec-2017.) (Revised by Jim Kingdon, 5-Aug-2024.)
Assertion
Ref Expression
prod1dc  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  \/  A  e.  Fin )  ->  prod_ k  e.  A 
1  =  1 )
Distinct variable groups:    A, j, k   
j, M, k

Proof of Theorem prod1dc
Dummy variables  a  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2165 . . 3  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2 simp1 987 . . 3  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  M  e.  ZZ )
3 1ap0 8488 . . . 4  |-  1 #  0
43a1i 9 . . 3  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  1 #  0 )
51prodfclim1 11485 . . . 4  |-  ( M  e.  ZZ  ->  seq M (  x.  , 
( ( ZZ>= `  M
)  X.  { 1 } ) )  ~~>  1 )
62, 5syl 14 . . 3  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  seq M (  x.  , 
( ( ZZ>= `  M
)  X.  { 1 } ) )  ~~>  1 )
7 simp3 989 . . . 4  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )
8 eleq1w 2227 . . . . . 6  |-  ( j  =  a  ->  (
j  e.  A  <->  a  e.  A ) )
98dcbid 828 . . . . 5  |-  ( j  =  a  ->  (DECID  j  e.  A  <-> DECID  a  e.  A )
)
109cbvralv 2692 . . . 4  |-  ( A. j  e.  ( ZZ>= `  M )DECID  j  e.  A  <->  A. a  e.  ( ZZ>= `  M )DECID  a  e.  A )
117, 10sylib 121 . . 3  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  A. a  e.  ( ZZ>= `  M )DECID  a  e.  A )
12 simp2 988 . . 3  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  A  C_  ( ZZ>= `  M )
)
13 1ex 7894 . . . . . 6  |-  1  e.  _V
1413fvconst2 5701 . . . . 5  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
( ZZ>= `  M )  X.  { 1 } ) `
 k )  =  1 )
1514adantl 275 . . . 4  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  ->  ( ( (
ZZ>= `  M )  X. 
{ 1 } ) `
 k )  =  1 )
16 eleq1w 2227 . . . . . . 7  |-  ( a  =  k  ->  (
a  e.  A  <->  k  e.  A ) )
1716dcbid 828 . . . . . 6  |-  ( a  =  k  ->  (DECID  a  e.  A  <-> DECID  k  e.  A )
)
1811adantr 274 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  ->  A. a  e.  (
ZZ>= `  M )DECID  a  e.  A )
19 simpr 109 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  ->  k  e.  (
ZZ>= `  M ) )
2017, 18, 19rspcdva 2835 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  -> DECID 
k  e.  A )
21 ifiddc 3553 . . . . 5  |-  (DECID  k  e.  A  ->  if (
k  e.  A , 
1 ,  1 )  =  1 )
2220, 21syl 14 . . . 4  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  ->  if ( k  e.  A ,  1 ,  1 )  =  1 )
2315, 22eqtr4d 2201 . . 3  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  ->  ( ( (
ZZ>= `  M )  X. 
{ 1 } ) `
 k )  =  if ( k  e.  A ,  1 ,  1 ) )
24 1cnd 7915 . . 3  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  A
)  ->  1  e.  CC )
251, 2, 4, 6, 11, 12, 23, 24zprodap0 11522 . 2  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  prod_ k  e.  A  1  =  1 )
26 fz1f1o 11316 . . 3  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
( `  A )  e.  NN  /\  E. f 
f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) ) )
27 prodeq1 11494 . . . . 5  |-  ( A  =  (/)  ->  prod_ k  e.  A  1  =  prod_ k  e.  (/)  1 )
28 prod0 11526 . . . . 5  |-  prod_ k  e.  (/)  1  =  1
2927, 28eqtrdi 2215 . . . 4  |-  ( A  =  (/)  ->  prod_ k  e.  A  1  = 
1 )
30 eqidd 2166 . . . . . . . . . 10  |-  ( k  =  ( f `  j )  ->  1  =  1 )
31 simpl 108 . . . . . . . . . 10  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  ( `  A )  e.  NN )
32 simpr 109 . . . . . . . . . 10  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  f : ( 1 ... ( `  A
) ) -1-1-onto-> A )
33 1cnd 7915 . . . . . . . . . 10  |-  ( ( ( ( `  A
)  e.  NN  /\  f : ( 1 ... ( `  A )
)
-1-1-onto-> A )  /\  k  e.  A )  ->  1  e.  CC )
34 elfznn 9989 . . . . . . . . . . . 12  |-  ( j  e.  ( 1 ... ( `  A )
)  ->  j  e.  NN )
3513fvconst2 5701 . . . . . . . . . . . 12  |-  ( j  e.  NN  ->  (
( NN  X.  {
1 } ) `  j )  =  1 )
3634, 35syl 14 . . . . . . . . . . 11  |-  ( j  e.  ( 1 ... ( `  A )
)  ->  ( ( NN  X.  { 1 } ) `  j )  =  1 )
3736adantl 275 . . . . . . . . . 10  |-  ( ( ( ( `  A
)  e.  NN  /\  f : ( 1 ... ( `  A )
)
-1-1-onto-> A )  /\  j  e.  ( 1 ... ( `  A ) ) )  ->  ( ( NN 
X.  { 1 } ) `  j )  =  1 )
3830, 31, 32, 33, 37fprodseq 11524 . . . . . . . . 9  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  prod_ k  e.  A 
1  =  (  seq 1 (  x.  , 
( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( NN  X.  {
1 } ) `  j ) ,  1 ) ) ) `  ( `  A ) ) )
39 simpr 109 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( `  A
)  e.  NN  /\  j  e.  NN )  /\  j  <_  ( `  A
) )  ->  j  <_  ( `  A )
)
4039iftrued 3527 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( `  A
)  e.  NN  /\  j  e.  NN )  /\  j  <_  ( `  A
) )  ->  if ( j  <_  ( `  A ) ,  ( ( NN  X.  {
1 } ) `  j ) ,  1 )  =  ( ( NN  X.  { 1 } ) `  j
) )
4135ad2antlr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( `  A
)  e.  NN  /\  j  e.  NN )  /\  j  <_  ( `  A
) )  ->  (
( NN  X.  {
1 } ) `  j )  =  1 )
4240, 41eqtrd 2198 . . . . . . . . . . . . . . 15  |-  ( ( ( ( `  A
)  e.  NN  /\  j  e.  NN )  /\  j  <_  ( `  A
) )  ->  if ( j  <_  ( `  A ) ,  ( ( NN  X.  {
1 } ) `  j ) ,  1 )  =  1 )
43 simpr 109 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( `  A
)  e.  NN  /\  j  e.  NN )  /\  -.  j  <_  ( `  A ) )  ->  -.  j  <_  ( `  A
) )
4443iffalsed 3530 . . . . . . . . . . . . . . 15  |-  ( ( ( ( `  A
)  e.  NN  /\  j  e.  NN )  /\  -.  j  <_  ( `  A ) )  ->  if ( j  <_  ( `  A ) ,  ( ( NN  X.  {
1 } ) `  j ) ,  1 )  =  1 )
45 nnz 9210 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  NN  ->  j  e.  ZZ )
46 nnz 9210 . . . . . . . . . . . . . . . . 17  |-  ( ( `  A )  e.  NN  ->  ( `  A )  e.  ZZ )
47 zdcle 9267 . . . . . . . . . . . . . . . . 17  |-  ( ( j  e.  ZZ  /\  ( `  A )  e.  ZZ )  -> DECID  j  <_  ( `  A
) )
4845, 46, 47syl2anr 288 . . . . . . . . . . . . . . . 16  |-  ( ( ( `  A )  e.  NN  /\  j  e.  NN )  -> DECID  j  <_  ( `  A
) )
49 exmiddc 826 . . . . . . . . . . . . . . . 16  |-  (DECID  j  <_ 
( `  A )  -> 
( j  <_  ( `  A )  \/  -.  j  <_  ( `  A )
) )
5048, 49syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( `  A )  e.  NN  /\  j  e.  NN )  ->  (
j  <_  ( `  A
)  \/  -.  j  <_  ( `  A )
) )
5142, 44, 50mpjaodan 788 . . . . . . . . . . . . . 14  |-  ( ( ( `  A )  e.  NN  /\  j  e.  NN )  ->  if ( j  <_  ( `  A ) ,  ( ( NN  X.  {
1 } ) `  j ) ,  1 )  =  1 )
5251mpteq2dva 4072 . . . . . . . . . . . . 13  |-  ( ( `  A )  e.  NN  ->  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( NN  X.  {
1 } ) `  j ) ,  1 ) )  =  ( j  e.  NN  |->  1 ) )
53 fconstmpt 4651 . . . . . . . . . . . . 13  |-  ( NN 
X.  { 1 } )  =  ( j  e.  NN  |->  1 )
5452, 53eqtr4di 2217 . . . . . . . . . . . 12  |-  ( ( `  A )  e.  NN  ->  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( NN  X.  {
1 } ) `  j ) ,  1 ) )  =  ( NN  X.  { 1 } ) )
5554seqeq3d 10388 . . . . . . . . . . 11  |-  ( ( `  A )  e.  NN  ->  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( NN 
X.  { 1 } ) `  j ) ,  1 ) ) )  =  seq 1
(  x.  ,  ( NN  X.  { 1 } ) ) )
5655adantr 274 . . . . . . . . . 10  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( NN 
X.  { 1 } ) `  j ) ,  1 ) ) )  =  seq 1
(  x.  ,  ( NN  X.  { 1 } ) ) )
5756fveq1d 5488 . . . . . . . . 9  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  (  seq 1
(  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( NN  X.  {
1 } ) `  j ) ,  1 ) ) ) `  ( `  A ) )  =  (  seq 1
(  x.  ,  ( NN  X.  { 1 } ) ) `  ( `  A ) ) )
5838, 57eqtrd 2198 . . . . . . . 8  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  prod_ k  e.  A 
1  =  (  seq 1 (  x.  , 
( NN  X.  {
1 } ) ) `
 ( `  A
) ) )
59 nnuz 9501 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
6059prodf1 11483 . . . . . . . . 9  |-  ( ( `  A )  e.  NN  ->  (  seq 1 (  x.  ,  ( NN 
X.  { 1 } ) ) `  ( `  A ) )  =  1 )
6160adantr 274 . . . . . . . 8  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  (  seq 1
(  x.  ,  ( NN  X.  { 1 } ) ) `  ( `  A ) )  =  1 )
6258, 61eqtrd 2198 . . . . . . 7  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  prod_ k  e.  A 
1  =  1 )
6362ex 114 . . . . . 6  |-  ( ( `  A )  e.  NN  ->  ( f : ( 1 ... ( `  A
) ) -1-1-onto-> A  ->  prod_ k  e.  A  1  =  1 ) )
6463exlimdv 1807 . . . . 5  |-  ( ( `  A )  e.  NN  ->  ( E. f  f : ( 1 ... ( `  A )
)
-1-1-onto-> A  ->  prod_ k  e.  A 
1  =  1 ) )
6564imp 123 . . . 4  |-  ( ( ( `  A )  e.  NN  /\  E. f 
f : ( 1 ... ( `  A
) ) -1-1-onto-> A )  ->  prod_ k  e.  A  1  =  1 )
6629, 65jaoi 706 . . 3  |-  ( ( A  =  (/)  \/  (
( `  A )  e.  NN  /\  E. f 
f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  ->  prod_ k  e.  A  1  =  1 )
6726, 66syl 14 . 2  |-  ( A  e.  Fin  ->  prod_ k  e.  A  1  =  1 )
6825, 67jaoi 706 1  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  \/  A  e.  Fin )  ->  prod_ k  e.  A 
1  =  1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 824    /\ w3a 968    = wceq 1343   E.wex 1480    e. wcel 2136   A.wral 2444    C_ wss 3116   (/)c0 3409   ifcif 3520   {csn 3576   class class class wbr 3982    |-> cmpt 4043    X. cxp 4602   -1-1-onto->wf1o 5187   ` cfv 5188  (class class class)co 5842   Fincfn 6706   0cc0 7753   1c1 7754    x. cmul 7758    <_ cle 7934   # cap 8479   NNcn 8857   ZZcz 9191   ZZ>=cuz 9466   ...cfz 9944    seqcseq 10380  ♯chash 10688    ~~> cli 11219   prod_cprod 11491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-proddc 11492
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator