Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prod1dc | Unicode version |
Description: Any product of one over a valid set is one. (Contributed by Scott Fenton, 7-Dec-2017.) (Revised by Jim Kingdon, 5-Aug-2024.) |
Ref | Expression |
---|---|
prod1dc | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2157 | . . 3 | |
2 | simp1 982 | . . 3 DECID | |
3 | 1ap0 8466 | . . . 4 # | |
4 | 3 | a1i 9 | . . 3 DECID # |
5 | 1 | prodfclim1 11445 | . . . 4 |
6 | 2, 5 | syl 14 | . . 3 DECID |
7 | simp3 984 | . . . 4 DECID DECID | |
8 | eleq1w 2218 | . . . . . 6 | |
9 | 8 | dcbid 824 | . . . . 5 DECID DECID |
10 | 9 | cbvralv 2680 | . . . 4 DECID DECID |
11 | 7, 10 | sylib 121 | . . 3 DECID DECID |
12 | simp2 983 | . . 3 DECID | |
13 | 1ex 7874 | . . . . . 6 | |
14 | 13 | fvconst2 5684 | . . . . 5 |
15 | 14 | adantl 275 | . . . 4 DECID |
16 | eleq1w 2218 | . . . . . . 7 | |
17 | 16 | dcbid 824 | . . . . . 6 DECID DECID |
18 | 11 | adantr 274 | . . . . . 6 DECID DECID |
19 | simpr 109 | . . . . . 6 DECID | |
20 | 17, 18, 19 | rspcdva 2821 | . . . . 5 DECID DECID |
21 | ifiddc 3538 | . . . . 5 DECID | |
22 | 20, 21 | syl 14 | . . . 4 DECID |
23 | 15, 22 | eqtr4d 2193 | . . 3 DECID |
24 | 1cnd 7895 | . . 3 DECID | |
25 | 1, 2, 4, 6, 11, 12, 23, 24 | zprodap0 11482 | . 2 DECID |
26 | fz1f1o 11276 | . . 3 ♯ ♯ | |
27 | prodeq1 11454 | . . . . 5 | |
28 | prod0 11486 | . . . . 5 | |
29 | 27, 28 | eqtrdi 2206 | . . . 4 |
30 | eqidd 2158 | . . . . . . . . . 10 | |
31 | simpl 108 | . . . . . . . . . 10 ♯ ♯ ♯ | |
32 | simpr 109 | . . . . . . . . . 10 ♯ ♯ ♯ | |
33 | 1cnd 7895 | . . . . . . . . . 10 ♯ ♯ | |
34 | elfznn 9957 | . . . . . . . . . . . 12 ♯ | |
35 | 13 | fvconst2 5684 | . . . . . . . . . . . 12 |
36 | 34, 35 | syl 14 | . . . . . . . . . . 11 ♯ |
37 | 36 | adantl 275 | . . . . . . . . . 10 ♯ ♯ ♯ |
38 | 30, 31, 32, 33, 37 | fprodseq 11484 | . . . . . . . . 9 ♯ ♯ ♯ ♯ |
39 | simpr 109 | . . . . . . . . . . . . . . . . 17 ♯ ♯ ♯ | |
40 | 39 | iftrued 3512 | . . . . . . . . . . . . . . . 16 ♯ ♯ ♯ |
41 | 35 | ad2antlr 481 | . . . . . . . . . . . . . . . 16 ♯ ♯ |
42 | 40, 41 | eqtrd 2190 | . . . . . . . . . . . . . . 15 ♯ ♯ ♯ |
43 | simpr 109 | . . . . . . . . . . . . . . . 16 ♯ ♯ ♯ | |
44 | 43 | iffalsed 3515 | . . . . . . . . . . . . . . 15 ♯ ♯ ♯ |
45 | nnz 9187 | . . . . . . . . . . . . . . . . 17 | |
46 | nnz 9187 | . . . . . . . . . . . . . . . . 17 ♯ ♯ | |
47 | zdcle 9241 | . . . . . . . . . . . . . . . . 17 ♯ DECID ♯ | |
48 | 45, 46, 47 | syl2anr 288 | . . . . . . . . . . . . . . . 16 ♯ DECID ♯ |
49 | exmiddc 822 | . . . . . . . . . . . . . . . 16 DECID ♯ ♯ ♯ | |
50 | 48, 49 | syl 14 | . . . . . . . . . . . . . . 15 ♯ ♯ ♯ |
51 | 42, 44, 50 | mpjaodan 788 | . . . . . . . . . . . . . 14 ♯ ♯ |
52 | 51 | mpteq2dva 4055 | . . . . . . . . . . . . 13 ♯ ♯ |
53 | fconstmpt 4634 | . . . . . . . . . . . . 13 | |
54 | 52, 53 | eqtr4di 2208 | . . . . . . . . . . . 12 ♯ ♯ |
55 | 54 | seqeq3d 10356 | . . . . . . . . . . 11 ♯ ♯ |
56 | 55 | adantr 274 | . . . . . . . . . 10 ♯ ♯ ♯ |
57 | 56 | fveq1d 5471 | . . . . . . . . 9 ♯ ♯ ♯ ♯ ♯ |
58 | 38, 57 | eqtrd 2190 | . . . . . . . 8 ♯ ♯ ♯ |
59 | nnuz 9475 | . . . . . . . . . 10 | |
60 | 59 | prodf1 11443 | . . . . . . . . 9 ♯ ♯ |
61 | 60 | adantr 274 | . . . . . . . 8 ♯ ♯ ♯ |
62 | 58, 61 | eqtrd 2190 | . . . . . . 7 ♯ ♯ |
63 | 62 | ex 114 | . . . . . 6 ♯ ♯ |
64 | 63 | exlimdv 1799 | . . . . 5 ♯ ♯ |
65 | 64 | imp 123 | . . . 4 ♯ ♯ |
66 | 29, 65 | jaoi 706 | . . 3 ♯ ♯ |
67 | 26, 66 | syl 14 | . 2 |
68 | 25, 67 | jaoi 706 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 DECID wdc 820 w3a 963 wceq 1335 wex 1472 wcel 2128 wral 2435 wss 3102 c0 3394 cif 3505 csn 3560 class class class wbr 3966 cmpt 4026 cxp 4585 wf1o 5170 cfv 5171 (class class class)co 5825 cfn 6686 cc0 7733 c1 7734 cmul 7738 cle 7914 # cap 8457 cn 8834 cz 9168 cuz 9440 cfz 9913 cseq 10348 ♯chash 10653 cli 11179 cprod 11451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4080 ax-sep 4083 ax-nul 4091 ax-pow 4136 ax-pr 4170 ax-un 4394 ax-setind 4497 ax-iinf 4548 ax-cnex 7824 ax-resscn 7825 ax-1cn 7826 ax-1re 7827 ax-icn 7828 ax-addcl 7829 ax-addrcl 7830 ax-mulcl 7831 ax-mulrcl 7832 ax-addcom 7833 ax-mulcom 7834 ax-addass 7835 ax-mulass 7836 ax-distr 7837 ax-i2m1 7838 ax-0lt1 7839 ax-1rid 7840 ax-0id 7841 ax-rnegex 7842 ax-precex 7843 ax-cnre 7844 ax-pre-ltirr 7845 ax-pre-ltwlin 7846 ax-pre-lttrn 7847 ax-pre-apti 7848 ax-pre-ltadd 7849 ax-pre-mulgt0 7850 ax-pre-mulext 7851 ax-arch 7852 ax-caucvg 7853 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3774 df-int 3809 df-iun 3852 df-br 3967 df-opab 4027 df-mpt 4028 df-tr 4064 df-id 4254 df-po 4257 df-iso 4258 df-iord 4327 df-on 4329 df-ilim 4330 df-suc 4332 df-iom 4551 df-xp 4593 df-rel 4594 df-cnv 4595 df-co 4596 df-dm 4597 df-rn 4598 df-res 4599 df-ima 4600 df-iota 5136 df-fun 5173 df-fn 5174 df-f 5175 df-f1 5176 df-fo 5177 df-f1o 5178 df-fv 5179 df-isom 5180 df-riota 5781 df-ov 5828 df-oprab 5829 df-mpo 5830 df-1st 6089 df-2nd 6090 df-recs 6253 df-irdg 6318 df-frec 6339 df-1o 6364 df-oadd 6368 df-er 6481 df-en 6687 df-dom 6688 df-fin 6689 df-pnf 7915 df-mnf 7916 df-xr 7917 df-ltxr 7918 df-le 7919 df-sub 8049 df-neg 8050 df-reap 8451 df-ap 8458 df-div 8547 df-inn 8835 df-2 8893 df-3 8894 df-4 8895 df-n0 9092 df-z 9169 df-uz 9441 df-q 9530 df-rp 9562 df-fz 9914 df-fzo 10046 df-seqfrec 10349 df-exp 10423 df-ihash 10654 df-cj 10746 df-re 10747 df-im 10748 df-rsqrt 10902 df-abs 10903 df-clim 11180 df-proddc 11452 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |