ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prod1dc Unicode version

Theorem prod1dc 11596
Description: Any product of one over a valid set is one. (Contributed by Scott Fenton, 7-Dec-2017.) (Revised by Jim Kingdon, 5-Aug-2024.)
Assertion
Ref Expression
prod1dc  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  \/  A  e.  Fin )  ->  prod_ k  e.  A 
1  =  1 )
Distinct variable groups:    A, j, k   
j, M, k

Proof of Theorem prod1dc
Dummy variables  a  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . . 3  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2 simp1 997 . . 3  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  M  e.  ZZ )
3 1ap0 8549 . . . 4  |-  1 #  0
43a1i 9 . . 3  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  1 #  0 )
51prodfclim1 11554 . . . 4  |-  ( M  e.  ZZ  ->  seq M (  x.  , 
( ( ZZ>= `  M
)  X.  { 1 } ) )  ~~>  1 )
62, 5syl 14 . . 3  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  seq M (  x.  , 
( ( ZZ>= `  M
)  X.  { 1 } ) )  ~~>  1 )
7 simp3 999 . . . 4  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )
8 eleq1w 2238 . . . . . 6  |-  ( j  =  a  ->  (
j  e.  A  <->  a  e.  A ) )
98dcbid 838 . . . . 5  |-  ( j  =  a  ->  (DECID  j  e.  A  <-> DECID  a  e.  A )
)
109cbvralv 2705 . . . 4  |-  ( A. j  e.  ( ZZ>= `  M )DECID  j  e.  A  <->  A. a  e.  ( ZZ>= `  M )DECID  a  e.  A )
117, 10sylib 122 . . 3  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  A. a  e.  ( ZZ>= `  M )DECID  a  e.  A )
12 simp2 998 . . 3  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  A  C_  ( ZZ>= `  M )
)
13 1ex 7954 . . . . . 6  |-  1  e.  _V
1413fvconst2 5734 . . . . 5  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
( ZZ>= `  M )  X.  { 1 } ) `
 k )  =  1 )
1514adantl 277 . . . 4  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  ->  ( ( (
ZZ>= `  M )  X. 
{ 1 } ) `
 k )  =  1 )
16 eleq1w 2238 . . . . . . 7  |-  ( a  =  k  ->  (
a  e.  A  <->  k  e.  A ) )
1716dcbid 838 . . . . . 6  |-  ( a  =  k  ->  (DECID  a  e.  A  <-> DECID  k  e.  A )
)
1811adantr 276 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  ->  A. a  e.  (
ZZ>= `  M )DECID  a  e.  A )
19 simpr 110 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  ->  k  e.  (
ZZ>= `  M ) )
2017, 18, 19rspcdva 2848 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  -> DECID 
k  e.  A )
21 ifiddc 3570 . . . . 5  |-  (DECID  k  e.  A  ->  if (
k  e.  A , 
1 ,  1 )  =  1 )
2220, 21syl 14 . . . 4  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  ->  if ( k  e.  A ,  1 ,  1 )  =  1 )
2315, 22eqtr4d 2213 . . 3  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  (
ZZ>= `  M ) )  ->  ( ( (
ZZ>= `  M )  X. 
{ 1 } ) `
 k )  =  if ( k  e.  A ,  1 ,  1 ) )
24 1cnd 7975 . . 3  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  /\  k  e.  A
)  ->  1  e.  CC )
251, 2, 4, 6, 11, 12, 23, 24zprodap0 11591 . 2  |-  ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M
)  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  ->  prod_ k  e.  A  1  =  1 )
26 fz1f1o 11385 . . 3  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
( `  A )  e.  NN  /\  E. f 
f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) ) )
27 prodeq1 11563 . . . . 5  |-  ( A  =  (/)  ->  prod_ k  e.  A  1  =  prod_ k  e.  (/)  1 )
28 prod0 11595 . . . . 5  |-  prod_ k  e.  (/)  1  =  1
2927, 28eqtrdi 2226 . . . 4  |-  ( A  =  (/)  ->  prod_ k  e.  A  1  = 
1 )
30 eqidd 2178 . . . . . . . . . 10  |-  ( k  =  ( f `  j )  ->  1  =  1 )
31 simpl 109 . . . . . . . . . 10  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  ( `  A )  e.  NN )
32 simpr 110 . . . . . . . . . 10  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  f : ( 1 ... ( `  A
) ) -1-1-onto-> A )
33 1cnd 7975 . . . . . . . . . 10  |-  ( ( ( ( `  A
)  e.  NN  /\  f : ( 1 ... ( `  A )
)
-1-1-onto-> A )  /\  k  e.  A )  ->  1  e.  CC )
34 elfznn 10056 . . . . . . . . . . . 12  |-  ( j  e.  ( 1 ... ( `  A )
)  ->  j  e.  NN )
3513fvconst2 5734 . . . . . . . . . . . 12  |-  ( j  e.  NN  ->  (
( NN  X.  {
1 } ) `  j )  =  1 )
3634, 35syl 14 . . . . . . . . . . 11  |-  ( j  e.  ( 1 ... ( `  A )
)  ->  ( ( NN  X.  { 1 } ) `  j )  =  1 )
3736adantl 277 . . . . . . . . . 10  |-  ( ( ( ( `  A
)  e.  NN  /\  f : ( 1 ... ( `  A )
)
-1-1-onto-> A )  /\  j  e.  ( 1 ... ( `  A ) ) )  ->  ( ( NN 
X.  { 1 } ) `  j )  =  1 )
3830, 31, 32, 33, 37fprodseq 11593 . . . . . . . . 9  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  prod_ k  e.  A 
1  =  (  seq 1 (  x.  , 
( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( NN  X.  {
1 } ) `  j ) ,  1 ) ) ) `  ( `  A ) ) )
39 simpr 110 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( `  A
)  e.  NN  /\  j  e.  NN )  /\  j  <_  ( `  A
) )  ->  j  <_  ( `  A )
)
4039iftrued 3543 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( `  A
)  e.  NN  /\  j  e.  NN )  /\  j  <_  ( `  A
) )  ->  if ( j  <_  ( `  A ) ,  ( ( NN  X.  {
1 } ) `  j ) ,  1 )  =  ( ( NN  X.  { 1 } ) `  j
) )
4135ad2antlr 489 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( `  A
)  e.  NN  /\  j  e.  NN )  /\  j  <_  ( `  A
) )  ->  (
( NN  X.  {
1 } ) `  j )  =  1 )
4240, 41eqtrd 2210 . . . . . . . . . . . . . . 15  |-  ( ( ( ( `  A
)  e.  NN  /\  j  e.  NN )  /\  j  <_  ( `  A
) )  ->  if ( j  <_  ( `  A ) ,  ( ( NN  X.  {
1 } ) `  j ) ,  1 )  =  1 )
43 simpr 110 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( `  A
)  e.  NN  /\  j  e.  NN )  /\  -.  j  <_  ( `  A ) )  ->  -.  j  <_  ( `  A
) )
4443iffalsed 3546 . . . . . . . . . . . . . . 15  |-  ( ( ( ( `  A
)  e.  NN  /\  j  e.  NN )  /\  -.  j  <_  ( `  A ) )  ->  if ( j  <_  ( `  A ) ,  ( ( NN  X.  {
1 } ) `  j ) ,  1 )  =  1 )
45 nnz 9274 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  NN  ->  j  e.  ZZ )
46 nnz 9274 . . . . . . . . . . . . . . . . 17  |-  ( ( `  A )  e.  NN  ->  ( `  A )  e.  ZZ )
47 zdcle 9331 . . . . . . . . . . . . . . . . 17  |-  ( ( j  e.  ZZ  /\  ( `  A )  e.  ZZ )  -> DECID  j  <_  ( `  A
) )
4845, 46, 47syl2anr 290 . . . . . . . . . . . . . . . 16  |-  ( ( ( `  A )  e.  NN  /\  j  e.  NN )  -> DECID  j  <_  ( `  A
) )
49 exmiddc 836 . . . . . . . . . . . . . . . 16  |-  (DECID  j  <_ 
( `  A )  -> 
( j  <_  ( `  A )  \/  -.  j  <_  ( `  A )
) )
5048, 49syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( `  A )  e.  NN  /\  j  e.  NN )  ->  (
j  <_  ( `  A
)  \/  -.  j  <_  ( `  A )
) )
5142, 44, 50mpjaodan 798 . . . . . . . . . . . . . 14  |-  ( ( ( `  A )  e.  NN  /\  j  e.  NN )  ->  if ( j  <_  ( `  A ) ,  ( ( NN  X.  {
1 } ) `  j ) ,  1 )  =  1 )
5251mpteq2dva 4095 . . . . . . . . . . . . 13  |-  ( ( `  A )  e.  NN  ->  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( NN  X.  {
1 } ) `  j ) ,  1 ) )  =  ( j  e.  NN  |->  1 ) )
53 fconstmpt 4675 . . . . . . . . . . . . 13  |-  ( NN 
X.  { 1 } )  =  ( j  e.  NN  |->  1 )
5452, 53eqtr4di 2228 . . . . . . . . . . . 12  |-  ( ( `  A )  e.  NN  ->  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( NN  X.  {
1 } ) `  j ) ,  1 ) )  =  ( NN  X.  { 1 } ) )
5554seqeq3d 10455 . . . . . . . . . . 11  |-  ( ( `  A )  e.  NN  ->  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( NN 
X.  { 1 } ) `  j ) ,  1 ) ) )  =  seq 1
(  x.  ,  ( NN  X.  { 1 } ) ) )
5655adantr 276 . . . . . . . . . 10  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  seq 1 (  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( NN 
X.  { 1 } ) `  j ) ,  1 ) ) )  =  seq 1
(  x.  ,  ( NN  X.  { 1 } ) ) )
5756fveq1d 5519 . . . . . . . . 9  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  (  seq 1
(  x.  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( NN  X.  {
1 } ) `  j ) ,  1 ) ) ) `  ( `  A ) )  =  (  seq 1
(  x.  ,  ( NN  X.  { 1 } ) ) `  ( `  A ) ) )
5838, 57eqtrd 2210 . . . . . . . 8  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  prod_ k  e.  A 
1  =  (  seq 1 (  x.  , 
( NN  X.  {
1 } ) ) `
 ( `  A
) ) )
59 nnuz 9565 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
6059prodf1 11552 . . . . . . . . 9  |-  ( ( `  A )  e.  NN  ->  (  seq 1 (  x.  ,  ( NN 
X.  { 1 } ) ) `  ( `  A ) )  =  1 )
6160adantr 276 . . . . . . . 8  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  (  seq 1
(  x.  ,  ( NN  X.  { 1 } ) ) `  ( `  A ) )  =  1 )
6258, 61eqtrd 2210 . . . . . . 7  |-  ( ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A )  ->  prod_ k  e.  A 
1  =  1 )
6362ex 115 . . . . . 6  |-  ( ( `  A )  e.  NN  ->  ( f : ( 1 ... ( `  A
) ) -1-1-onto-> A  ->  prod_ k  e.  A  1  =  1 ) )
6463exlimdv 1819 . . . . 5  |-  ( ( `  A )  e.  NN  ->  ( E. f  f : ( 1 ... ( `  A )
)
-1-1-onto-> A  ->  prod_ k  e.  A 
1  =  1 ) )
6564imp 124 . . . 4  |-  ( ( ( `  A )  e.  NN  /\  E. f 
f : ( 1 ... ( `  A
) ) -1-1-onto-> A )  ->  prod_ k  e.  A  1  =  1 )
6629, 65jaoi 716 . . 3  |-  ( ( A  =  (/)  \/  (
( `  A )  e.  NN  /\  E. f 
f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  ->  prod_ k  e.  A  1  =  1 )
6726, 66syl 14 . 2  |-  ( A  e.  Fin  ->  prod_ k  e.  A  1  =  1 )
6825, 67jaoi 716 1  |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )  \/  A  e.  Fin )  ->  prod_ k  e.  A 
1  =  1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708  DECID wdc 834    /\ w3a 978    = wceq 1353   E.wex 1492    e. wcel 2148   A.wral 2455    C_ wss 3131   (/)c0 3424   ifcif 3536   {csn 3594   class class class wbr 4005    |-> cmpt 4066    X. cxp 4626   -1-1-onto->wf1o 5217   ` cfv 5218  (class class class)co 5877   Fincfn 6742   0cc0 7813   1c1 7814    x. cmul 7818    <_ cle 7995   # cap 8540   NNcn 8921   ZZcz 9255   ZZ>=cuz 9530   ...cfz 10010    seqcseq 10447  ♯chash 10757    ~~> cli 11288   prod_cprod 11560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-frec 6394  df-1o 6419  df-oadd 6423  df-er 6537  df-en 6743  df-dom 6744  df-fin 6745  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-fz 10011  df-fzo 10145  df-seqfrec 10448  df-exp 10522  df-ihash 10758  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-clim 11289  df-proddc 11561
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator