ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpscf Unicode version

Theorem xpscf 12771
Description: Equivalent condition for the pair function to be a proper function on  A. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xpscf  |-  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. } : 2o --> A  <->  ( X  e.  A  /\  Y  e.  A ) )

Proof of Theorem xpscf
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 2onn 6524 . . . . . . . . 9  |-  2o  e.  om
2 elnn 4607 . . . . . . . . 9  |-  ( ( k  e.  2o  /\  2o  e.  om )  -> 
k  e.  om )
31, 2mpan2 425 . . . . . . . 8  |-  ( k  e.  2o  ->  k  e.  om )
4 peano1 4595 . . . . . . . 8  |-  (/)  e.  om
5 nndceq 6502 . . . . . . . 8  |-  ( ( k  e.  om  /\  (/) 
e.  om )  -> DECID  k  =  (/) )
63, 4, 5sylancl 413 . . . . . . 7  |-  ( k  e.  2o  -> DECID  k  =  (/) )
7 ifiddc 3570 . . . . . . 7  |-  (DECID  k  =  (/)  ->  if ( k  =  (/) ,  A ,  A )  =  A )
86, 7syl 14 . . . . . 6  |-  ( k  e.  2o  ->  if ( k  =  (/) ,  A ,  A )  =  A )
98eleq2d 2247 . . . . 5  |-  ( k  e.  2o  ->  (
( { <. (/) ,  X >. ,  <. 1o ,  Y >. } `  k )  e.  if ( k  =  (/) ,  A ,  A )  <->  ( { <.
(/) ,  X >. , 
<. 1o ,  Y >. } `
 k )  e.  A ) )
109ralbiia 2491 . . . 4  |-  ( A. k  e.  2o  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 k )  e.  if ( k  =  (/) ,  A ,  A
)  <->  A. k  e.  2o  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 k )  e.  A )
1110anbi2i 457 . . 3  |-  ( ( { <. (/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  /\  A. k  e.  2o  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 k )  e.  if ( k  =  (/) ,  A ,  A
) )  <->  ( { <.
(/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  /\  A. k  e.  2o  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 k )  e.  A ) )
12 df-3an 980 . . . 4  |-  ( ( { <. (/) ,  X >. , 
<. 1o ,  Y >. }  e.  _V  /\  { <.
(/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  /\  A. k  e.  2o  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 k )  e.  if ( k  =  (/) ,  A ,  A
) )  <->  ( ( { <. (/) ,  X >. , 
<. 1o ,  Y >. }  e.  _V  /\  { <.
(/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o )  /\  A. k  e.  2o  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 k )  e.  if ( k  =  (/) ,  A ,  A
) ) )
13 elixp2 6704 . . . 4  |-  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. }  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  A )  <-> 
( { <. (/) ,  X >. ,  <. 1o ,  Y >. }  e.  _V  /\  {
<. (/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  /\  A. k  e.  2o  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 k )  e.  if ( k  =  (/) ,  A ,  A
) ) )
14 fnex 5740 . . . . . . 7  |-  ( ( { <. (/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  /\  2o  e.  om )  ->  { <. (/)
,  X >. ,  <. 1o ,  Y >. }  e.  _V )
151, 14mpan2 425 . . . . . 6  |-  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  ->  { <. (/)
,  X >. ,  <. 1o ,  Y >. }  e.  _V )
1615pm4.71ri 392 . . . . 5  |-  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  <->  ( { <.
(/) ,  X >. , 
<. 1o ,  Y >. }  e.  _V  /\  { <.
(/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o ) )
1716anbi1i 458 . . . 4  |-  ( ( { <. (/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  /\  A. k  e.  2o  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 k )  e.  if ( k  =  (/) ,  A ,  A
) )  <->  ( ( { <. (/) ,  X >. , 
<. 1o ,  Y >. }  e.  _V  /\  { <.
(/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o )  /\  A. k  e.  2o  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 k )  e.  if ( k  =  (/) ,  A ,  A
) ) )
1812, 13, 173bitr4i 212 . . 3  |-  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. }  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  A )  <-> 
( { <. (/) ,  X >. ,  <. 1o ,  Y >. }  Fn  2o  /\  A. k  e.  2o  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 k )  e.  if ( k  =  (/) ,  A ,  A
) ) )
19 ffnfv 5676 . . 3  |-  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. } : 2o --> A  <->  ( { <.
(/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  /\  A. k  e.  2o  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 k )  e.  A ) )
2011, 18, 193bitr4i 212 . 2  |-  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. }  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  A )  <->  { <. (/) ,  X >. , 
<. 1o ,  Y >. } : 2o --> A )
21 xpsfrnel2 12770 . 2  |-  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. }  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  A )  <-> 
( X  e.  A  /\  Y  e.  A
) )
2220, 21bitr3i 186 1  |-  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. } : 2o --> A  <->  ( X  e.  A  /\  Y  e.  A ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105  DECID wdc 834    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455   _Vcvv 2739   (/)c0 3424   ifcif 3536   {cpr 3595   <.cop 3597   omcom 4591    Fn wfn 5213   -->wf 5214   ` cfv 5218   1oc1o 6412   2oc2o 6413   X_cixp 6700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-1o 6419  df-2o 6420  df-er 6537  df-ixp 6701  df-en 6743  df-fin 6745
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator