ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpscf Unicode version

Theorem xpscf 13212
Description: Equivalent condition for the pair function to be a proper function on  A. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xpscf  |-  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. } : 2o --> A  <->  ( X  e.  A  /\  Y  e.  A ) )

Proof of Theorem xpscf
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 2onn 6609 . . . . . . . . 9  |-  2o  e.  om
2 elnn 4655 . . . . . . . . 9  |-  ( ( k  e.  2o  /\  2o  e.  om )  -> 
k  e.  om )
31, 2mpan2 425 . . . . . . . 8  |-  ( k  e.  2o  ->  k  e.  om )
4 peano1 4643 . . . . . . . 8  |-  (/)  e.  om
5 nndceq 6587 . . . . . . . 8  |-  ( ( k  e.  om  /\  (/) 
e.  om )  -> DECID  k  =  (/) )
63, 4, 5sylancl 413 . . . . . . 7  |-  ( k  e.  2o  -> DECID  k  =  (/) )
7 ifiddc 3606 . . . . . . 7  |-  (DECID  k  =  (/)  ->  if ( k  =  (/) ,  A ,  A )  =  A )
86, 7syl 14 . . . . . 6  |-  ( k  e.  2o  ->  if ( k  =  (/) ,  A ,  A )  =  A )
98eleq2d 2275 . . . . 5  |-  ( k  e.  2o  ->  (
( { <. (/) ,  X >. ,  <. 1o ,  Y >. } `  k )  e.  if ( k  =  (/) ,  A ,  A )  <->  ( { <.
(/) ,  X >. , 
<. 1o ,  Y >. } `
 k )  e.  A ) )
109ralbiia 2520 . . . 4  |-  ( A. k  e.  2o  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 k )  e.  if ( k  =  (/) ,  A ,  A
)  <->  A. k  e.  2o  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 k )  e.  A )
1110anbi2i 457 . . 3  |-  ( ( { <. (/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  /\  A. k  e.  2o  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 k )  e.  if ( k  =  (/) ,  A ,  A
) )  <->  ( { <.
(/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  /\  A. k  e.  2o  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 k )  e.  A ) )
12 df-3an 983 . . . 4  |-  ( ( { <. (/) ,  X >. , 
<. 1o ,  Y >. }  e.  _V  /\  { <.
(/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  /\  A. k  e.  2o  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 k )  e.  if ( k  =  (/) ,  A ,  A
) )  <->  ( ( { <. (/) ,  X >. , 
<. 1o ,  Y >. }  e.  _V  /\  { <.
(/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o )  /\  A. k  e.  2o  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 k )  e.  if ( k  =  (/) ,  A ,  A
) ) )
13 elixp2 6791 . . . 4  |-  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. }  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  A )  <-> 
( { <. (/) ,  X >. ,  <. 1o ,  Y >. }  e.  _V  /\  {
<. (/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  /\  A. k  e.  2o  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 k )  e.  if ( k  =  (/) ,  A ,  A
) ) )
14 fnex 5808 . . . . . . 7  |-  ( ( { <. (/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  /\  2o  e.  om )  ->  { <. (/)
,  X >. ,  <. 1o ,  Y >. }  e.  _V )
151, 14mpan2 425 . . . . . 6  |-  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  ->  { <. (/)
,  X >. ,  <. 1o ,  Y >. }  e.  _V )
1615pm4.71ri 392 . . . . 5  |-  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  <->  ( { <.
(/) ,  X >. , 
<. 1o ,  Y >. }  e.  _V  /\  { <.
(/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o ) )
1716anbi1i 458 . . . 4  |-  ( ( { <. (/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  /\  A. k  e.  2o  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 k )  e.  if ( k  =  (/) ,  A ,  A
) )  <->  ( ( { <. (/) ,  X >. , 
<. 1o ,  Y >. }  e.  _V  /\  { <.
(/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o )  /\  A. k  e.  2o  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 k )  e.  if ( k  =  (/) ,  A ,  A
) ) )
1812, 13, 173bitr4i 212 . . 3  |-  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. }  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  A )  <-> 
( { <. (/) ,  X >. ,  <. 1o ,  Y >. }  Fn  2o  /\  A. k  e.  2o  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 k )  e.  if ( k  =  (/) ,  A ,  A
) ) )
19 ffnfv 5740 . . 3  |-  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. } : 2o --> A  <->  ( { <.
(/) ,  X >. , 
<. 1o ,  Y >. }  Fn  2o  /\  A. k  e.  2o  ( { <. (/) ,  X >. , 
<. 1o ,  Y >. } `
 k )  e.  A ) )
2011, 18, 193bitr4i 212 . 2  |-  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. }  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  A )  <->  { <. (/) ,  X >. , 
<. 1o ,  Y >. } : 2o --> A )
21 xpsfrnel2 13211 . 2  |-  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. }  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  A )  <-> 
( X  e.  A  /\  Y  e.  A
) )
2220, 21bitr3i 186 1  |-  ( {
<. (/) ,  X >. , 
<. 1o ,  Y >. } : 2o --> A  <->  ( X  e.  A  /\  Y  e.  A ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105  DECID wdc 836    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484   _Vcvv 2772   (/)c0 3460   ifcif 3571   {cpr 3634   <.cop 3636   omcom 4639    Fn wfn 5267   -->wf 5268   ` cfv 5272   1oc1o 6497   2oc2o 6498   X_cixp 6787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-1o 6504  df-2o 6505  df-er 6622  df-ixp 6788  df-en 6830  df-fin 6832
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator