Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ifssun | GIF version |
Description: A conditional class is included in the union of its two alternatives. (Contributed by BJ, 15-Aug-2024.) |
Ref | Expression |
---|---|
ifssun | ⊢ if(𝜑, 𝐴, 𝐵) ⊆ (𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfif6 3522 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) | |
2 | ssrab2 3227 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
3 | ssrab2 3227 | . . 3 ⊢ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑} ⊆ 𝐵 | |
4 | unss12 3294 | . . 3 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ∧ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑} ⊆ 𝐵) → ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) ⊆ (𝐴 ∪ 𝐵)) | |
5 | 2, 3, 4 | mp2an 423 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) ⊆ (𝐴 ∪ 𝐵) |
6 | 1, 5 | eqsstri 3174 | 1 ⊢ if(𝜑, 𝐴, 𝐵) ⊆ (𝐴 ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 {crab 2448 ∪ cun 3114 ⊆ wss 3116 ifcif 3520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 |
This theorem is referenced by: ifidss 3535 ifelpwung 4459 |
Copyright terms: Public domain | W3C validator |