![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ifssun | GIF version |
Description: A conditional class is included in the union of its two alternatives. (Contributed by BJ, 15-Aug-2024.) |
Ref | Expression |
---|---|
ifssun | ⊢ if(𝜑, 𝐴, 𝐵) ⊆ (𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfif6 3548 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) | |
2 | ssrab2 3252 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
3 | ssrab2 3252 | . . 3 ⊢ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑} ⊆ 𝐵 | |
4 | unss12 3319 | . . 3 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ∧ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑} ⊆ 𝐵) → ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) ⊆ (𝐴 ∪ 𝐵)) | |
5 | 2, 3, 4 | mp2an 426 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) ⊆ (𝐴 ∪ 𝐵) |
6 | 1, 5 | eqsstri 3199 | 1 ⊢ if(𝜑, 𝐴, 𝐵) ⊆ (𝐴 ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 {crab 2469 ∪ cun 3139 ⊆ wss 3141 ifcif 3546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-rab 2474 df-v 2751 df-un 3145 df-in 3147 df-ss 3154 df-if 3547 |
This theorem is referenced by: ifidss 3561 ifelpwung 4493 |
Copyright terms: Public domain | W3C validator |