ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifssun GIF version

Theorem ifssun 3560
Description: A conditional class is included in the union of its two alternatives. (Contributed by BJ, 15-Aug-2024.)
Assertion
Ref Expression
ifssun if(𝜑, 𝐴, 𝐵) ⊆ (𝐴𝐵)

Proof of Theorem ifssun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfif6 3548 . 2 if(𝜑, 𝐴, 𝐵) = ({𝑥𝐴𝜑} ∪ {𝑥𝐵 ∣ ¬ 𝜑})
2 ssrab2 3252 . . 3 {𝑥𝐴𝜑} ⊆ 𝐴
3 ssrab2 3252 . . 3 {𝑥𝐵 ∣ ¬ 𝜑} ⊆ 𝐵
4 unss12 3319 . . 3 (({𝑥𝐴𝜑} ⊆ 𝐴 ∧ {𝑥𝐵 ∣ ¬ 𝜑} ⊆ 𝐵) → ({𝑥𝐴𝜑} ∪ {𝑥𝐵 ∣ ¬ 𝜑}) ⊆ (𝐴𝐵))
52, 3, 4mp2an 426 . 2 ({𝑥𝐴𝜑} ∪ {𝑥𝐵 ∣ ¬ 𝜑}) ⊆ (𝐴𝐵)
61, 5eqsstri 3199 1 if(𝜑, 𝐴, 𝐵) ⊆ (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  {crab 2469  cun 3139  wss 3141  ifcif 3546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-rab 2474  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-if 3547
This theorem is referenced by:  ifidss  3561  ifelpwung  4493
  Copyright terms: Public domain W3C validator