![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ifssun | GIF version |
Description: A conditional class is included in the union of its two alternatives. (Contributed by BJ, 15-Aug-2024.) |
Ref | Expression |
---|---|
ifssun | ⊢ if(𝜑, 𝐴, 𝐵) ⊆ (𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfif6 3559 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) | |
2 | ssrab2 3264 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
3 | ssrab2 3264 | . . 3 ⊢ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑} ⊆ 𝐵 | |
4 | unss12 3331 | . . 3 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ∧ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑} ⊆ 𝐵) → ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) ⊆ (𝐴 ∪ 𝐵)) | |
5 | 2, 3, 4 | mp2an 426 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) ⊆ (𝐴 ∪ 𝐵) |
6 | 1, 5 | eqsstri 3211 | 1 ⊢ if(𝜑, 𝐴, 𝐵) ⊆ (𝐴 ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 {crab 2476 ∪ cun 3151 ⊆ wss 3153 ifcif 3557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rab 2481 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-if 3558 |
This theorem is referenced by: ifidss 3572 ifelpwung 4512 |
Copyright terms: Public domain | W3C validator |