| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifssun | GIF version | ||
| Description: A conditional class is included in the union of its two alternatives. (Contributed by BJ, 15-Aug-2024.) |
| Ref | Expression |
|---|---|
| ifssun | ⊢ if(𝜑, 𝐴, 𝐵) ⊆ (𝐴 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfif6 3584 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) | |
| 2 | ssrab2 3289 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
| 3 | ssrab2 3289 | . . 3 ⊢ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑} ⊆ 𝐵 | |
| 4 | unss12 3356 | . . 3 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ∧ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑} ⊆ 𝐵) → ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) ⊆ (𝐴 ∪ 𝐵)) | |
| 5 | 2, 3, 4 | mp2an 426 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) ⊆ (𝐴 ∪ 𝐵) |
| 6 | 1, 5 | eqsstri 3236 | 1 ⊢ if(𝜑, 𝐴, 𝐵) ⊆ (𝐴 ∪ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 {crab 2492 ∪ cun 3175 ⊆ wss 3177 ifcif 3582 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-rab 2497 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-if 3583 |
| This theorem is referenced by: ifidss 3598 ifelpwung 4549 |
| Copyright terms: Public domain | W3C validator |