ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djudom Unicode version

Theorem djudom 7154
Description: Dominance law for disjoint union. (Contributed by Jim Kingdon, 25-Jul-2022.)
Assertion
Ref Expression
djudom  |-  ( ( A  ~<_  B  /\  C  ~<_  D )  ->  ( A C )  ~<_  ( B D ) )

Proof of Theorem djudom
Dummy variables  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdomi 6805 . . 3  |-  ( A  ~<_  B  ->  E. f 
f : A -1-1-> B
)
21adantr 276 . 2  |-  ( ( A  ~<_  B  /\  C  ~<_  D )  ->  E. f 
f : A -1-1-> B
)
3 brdomi 6805 . . . 4  |-  ( C  ~<_  D  ->  E. g 
g : C -1-1-> D
)
43ad2antlr 489 . . 3  |-  ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  f : A -1-1-> B )  ->  E. g  g : C -1-1-> D )
5 inlresf1 7122 . . . . . . . . 9  |-  (inl  |`  B ) : B -1-1-> ( B D )
6 simplr 528 . . . . . . . . 9  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  f : A -1-1-> B )  /\  g : C -1-1-> D )  -> 
f : A -1-1-> B
)
7 f1co 5472 . . . . . . . . 9  |-  ( ( (inl  |`  B ) : B -1-1-> ( B D )  /\  f : A -1-1-> B )  ->  ( (inl  |`  B )  o.  f
) : A -1-1-> ( B D ) )
85, 6, 7sylancr 414 . . . . . . . 8  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  f : A -1-1-> B )  /\  g : C -1-1-> D )  -> 
( (inl  |`  B )  o.  f ) : A -1-1-> ( B D ) )
9 inrresf1 7123 . . . . . . . . 9  |-  (inr  |`  D ) : D -1-1-> ( B D )
10 simpr 110 . . . . . . . . 9  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  f : A -1-1-> B )  /\  g : C -1-1-> D )  -> 
g : C -1-1-> D
)
11 f1co 5472 . . . . . . . . 9  |-  ( ( (inr  |`  D ) : D -1-1-> ( B D )  /\  g : C -1-1-> D )  ->  ( (inr  |`  D )  o.  g
) : C -1-1-> ( B D ) )
129, 10, 11sylancr 414 . . . . . . . 8  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  f : A -1-1-> B )  /\  g : C -1-1-> D )  -> 
( (inr  |`  D )  o.  g ) : C -1-1-> ( B D ) )
13 rnco 5173 . . . . . . . . . . 11  |-  ran  (
(inl  |`  B )  o.  f )  =  ran  ( (inl  |`  B )  |`  ran  f )
14 f1rn 5461 . . . . . . . . . . . . . 14  |-  ( f : A -1-1-> B  ->  ran  f  C_  B )
1514ad2antlr 489 . . . . . . . . . . . . 13  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  f : A -1-1-> B )  /\  g : C -1-1-> D )  ->  ran  f  C_  B )
16 resabs1 4972 . . . . . . . . . . . . 13  |-  ( ran  f  C_  B  ->  ( (inl  |`  B )  |`  ran  f )  =  (inl  |`  ran  f ) )
1715, 16syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  f : A -1-1-> B )  /\  g : C -1-1-> D )  -> 
( (inl  |`  B )  |`  ran  f )  =  (inl  |`  ran  f ) )
1817rneqd 4892 . . . . . . . . . . 11  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  f : A -1-1-> B )  /\  g : C -1-1-> D )  ->  ran  ( (inl  |`  B )  |`  ran  f )  =  ran  (inl  |`  ran  f
) )
1913, 18eqtrid 2238 . . . . . . . . . 10  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  f : A -1-1-> B )  /\  g : C -1-1-> D )  ->  ran  ( (inl  |`  B )  o.  f )  =  ran  (inl  |`  ran  f
) )
20 rnco 5173 . . . . . . . . . . 11  |-  ran  (
(inr  |`  D )  o.  g )  =  ran  ( (inr  |`  D )  |`  ran  g )
21 f1rn 5461 . . . . . . . . . . . . 13  |-  ( g : C -1-1-> D  ->  ran  g  C_  D )
22 resabs1 4972 . . . . . . . . . . . . 13  |-  ( ran  g  C_  D  ->  ( (inr  |`  D )  |`  ran  g )  =  (inr  |`  ran  g ) )
2310, 21, 223syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  f : A -1-1-> B )  /\  g : C -1-1-> D )  -> 
( (inr  |`  D )  |`  ran  g )  =  (inr  |`  ran  g ) )
2423rneqd 4892 . . . . . . . . . . 11  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  f : A -1-1-> B )  /\  g : C -1-1-> D )  ->  ran  ( (inr  |`  D )  |`  ran  g )  =  ran  (inr  |`  ran  g
) )
2520, 24eqtrid 2238 . . . . . . . . . 10  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  f : A -1-1-> B )  /\  g : C -1-1-> D )  ->  ran  ( (inr  |`  D )  o.  g )  =  ran  (inr  |`  ran  g
) )
2619, 25ineq12d 3362 . . . . . . . . 9  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  f : A -1-1-> B )  /\  g : C -1-1-> D )  -> 
( ran  ( (inl  |`  B )  o.  f
)  i^i  ran  ( (inr  |`  D )  o.  g
) )  =  ( ran  (inl  |`  ran  f
)  i^i  ran  (inr  |`  ran  g
) ) )
27 djuinr 7124 . . . . . . . . 9  |-  ( ran  (inl  |`  ran  f )  i^i  ran  (inr  |`  ran  g
) )  =  (/)
2826, 27eqtrdi 2242 . . . . . . . 8  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  f : A -1-1-> B )  /\  g : C -1-1-> D )  -> 
( ran  ( (inl  |`  B )  o.  f
)  i^i  ran  ( (inr  |`  D )  o.  g
) )  =  (/) )
298, 12, 28casef1 7151 . . . . . . 7  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  f : A -1-1-> B )  /\  g : C -1-1-> D )  -> case ( ( (inl  |`  B )  o.  f ) ,  ( (inr  |`  D )  o.  g ) ) : ( A C )
-1-1-> ( B D )
)
30 f1f 5460 . . . . . . 7  |-  (case ( ( (inl  |`  B )  o.  f ) ,  ( (inr  |`  D )  o.  g ) ) : ( A C )
-1-1-> ( B D )  -> case ( ( (inl  |`  B )  o.  f ) ,  ( (inr  |`  D )  o.  g ) ) : ( A C ) --> ( B D )
)
3129, 30syl 14 . . . . . 6  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  f : A -1-1-> B )  /\  g : C -1-1-> D )  -> case ( ( (inl  |`  B )  o.  f ) ,  ( (inr  |`  D )  o.  g ) ) : ( A C ) --> ( B D )
)
32 reldom 6801 . . . . . . . . 9  |-  Rel  ~<_
3332brrelex1i 4703 . . . . . . . 8  |-  ( A  ~<_  B  ->  A  e.  _V )
3433ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  f : A -1-1-> B )  /\  g : C -1-1-> D )  ->  A  e.  _V )
3532brrelex1i 4703 . . . . . . . 8  |-  ( C  ~<_  D  ->  C  e.  _V )
3635ad3antlr 493 . . . . . . 7  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  f : A -1-1-> B )  /\  g : C -1-1-> D )  ->  C  e.  _V )
37 djuex 7104 . . . . . . 7  |-  ( ( A  e.  _V  /\  C  e.  _V )  ->  ( A C )  e.  _V )
3834, 36, 37syl2anc 411 . . . . . 6  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  f : A -1-1-> B )  /\  g : C -1-1-> D )  -> 
( A C )  e.  _V )
39 fex 5788 . . . . . 6  |-  ( (case ( ( (inl  |`  B )  o.  f ) ,  ( (inr  |`  D )  o.  g ) ) : ( A C ) --> ( B D )  /\  ( A C )  e.  _V )  -> case ( ( (inl  |`  B )  o.  f ) ,  ( (inr  |`  D )  o.  g ) )  e. 
_V )
4031, 38, 39syl2anc 411 . . . . 5  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  f : A -1-1-> B )  /\  g : C -1-1-> D )  -> case ( ( (inl  |`  B )  o.  f ) ,  ( (inr  |`  D )  o.  g ) )  e.  _V )
41 f1eq1 5455 . . . . . 6  |-  ( h  = case ( ( (inl  |`  B )  o.  f
) ,  ( (inr  |`  D )  o.  g
) )  ->  (
h : ( A C ) -1-1-> ( B D )  <-> case ( (
(inl  |`  B )  o.  f ) ,  ( (inr  |`  D )  o.  g ) ) : ( A C ) -1-1-> ( B D )
) )
4241spcegv 2849 . . . . 5  |-  (case ( ( (inl  |`  B )  o.  f ) ,  ( (inr  |`  D )  o.  g ) )  e.  _V  ->  (case ( ( (inl  |`  B )  o.  f ) ,  ( (inr  |`  D )  o.  g ) ) : ( A C )
-1-1-> ( B D )  ->  E. h  h : ( A C ) -1-1-> ( B D )
) )
4340, 29, 42sylc 62 . . . 4  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  f : A -1-1-> B )  /\  g : C -1-1-> D )  ->  E. h  h :
( A C ) -1-1-> ( B D )
)
4432brrelex2i 4704 . . . . . 6  |-  ( A  ~<_  B  ->  B  e.  _V )
4544ad3antrrr 492 . . . . 5  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  f : A -1-1-> B )  /\  g : C -1-1-> D )  ->  B  e.  _V )
4632brrelex2i 4704 . . . . . 6  |-  ( C  ~<_  D  ->  D  e.  _V )
4746ad3antlr 493 . . . . 5  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  f : A -1-1-> B )  /\  g : C -1-1-> D )  ->  D  e.  _V )
48 djuex 7104 . . . . . 6  |-  ( ( B  e.  _V  /\  D  e.  _V )  ->  ( B D )  e.  _V )
49 brdomg 6804 . . . . . 6  |-  ( ( B D )  e.  _V  ->  ( ( A C )  ~<_  ( B D )  <->  E. h  h : ( A C ) -1-1-> ( B D ) ) )
5048, 49syl 14 . . . . 5  |-  ( ( B  e.  _V  /\  D  e.  _V )  ->  ( ( A C )  ~<_  ( B D )  <->  E. h  h : ( A C ) -1-1-> ( B D ) ) )
5145, 47, 50syl2anc 411 . . . 4  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  f : A -1-1-> B )  /\  g : C -1-1-> D )  -> 
( ( A C )  ~<_  ( B D )  <->  E. h  h : ( A C ) -1-1-> ( B D ) ) )
5243, 51mpbird 167 . . 3  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  f : A -1-1-> B )  /\  g : C -1-1-> D )  -> 
( A C )  ~<_  ( B D ) )
534, 52exlimddv 1910 . 2  |-  ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  f : A -1-1-> B )  ->  ( A C )  ~<_  ( B D )
)
542, 53exlimddv 1910 1  |-  ( ( A  ~<_  B  /\  C  ~<_  D )  ->  ( A C )  ~<_  ( B D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1503    e. wcel 2164   _Vcvv 2760    i^i cin 3153    C_ wss 3154   (/)c0 3447   class class class wbr 4030   ran crn 4661    |` cres 4662    o. ccom 4664   -->wf 5251   -1-1->wf1 5252    ~<_ cdom 6795   ⊔ cdju 7098  inlcinl 7106  inrcinr 7107  casecdjucase 7144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1st 6195  df-2nd 6196  df-1o 6471  df-dom 6798  df-dju 7099  df-inl 7108  df-inr 7109  df-case 7145
This theorem is referenced by:  exmidfodomrlemr  7264  exmidfodomrlemrALT  7265  sbthom  15586
  Copyright terms: Public domain W3C validator