ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funprg Unicode version

Theorem funprg 5238
Description: A set of two pairs is a function if their first members are different. (Contributed by FL, 26-Jun-2011.)
Assertion
Ref Expression
funprg  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  Fun  {
<. A ,  C >. , 
<. B ,  D >. } )

Proof of Theorem funprg
StepHypRef Expression
1 simp1l 1011 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  A  e.  V )
2 simp2l 1013 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  C  e.  X )
3 funsng 5234 . . . 4  |-  ( ( A  e.  V  /\  C  e.  X )  ->  Fun  { <. A ,  C >. } )
41, 2, 3syl2anc 409 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  Fun  {
<. A ,  C >. } )
5 simp1r 1012 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  B  e.  W )
6 simp2r 1014 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  D  e.  Y )
7 funsng 5234 . . . 4  |-  ( ( B  e.  W  /\  D  e.  Y )  ->  Fun  { <. B ,  D >. } )
85, 6, 7syl2anc 409 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  Fun  {
<. B ,  D >. } )
9 dmsnopg 5075 . . . . . 6  |-  ( C  e.  X  ->  dom  {
<. A ,  C >. }  =  { A }
)
102, 9syl 14 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  dom  {
<. A ,  C >. }  =  { A }
)
11 dmsnopg 5075 . . . . . 6  |-  ( D  e.  Y  ->  dom  {
<. B ,  D >. }  =  { B }
)
126, 11syl 14 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  dom  {
<. B ,  D >. }  =  { B }
)
1310, 12ineq12d 3324 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  ( dom  { <. A ,  C >. }  i^i  dom  { <. B ,  D >. } )  =  ( { A }  i^i  { B } ) )
14 disjsn2 3639 . . . . 5  |-  ( A  =/=  B  ->  ( { A }  i^i  { B } )  =  (/) )
15143ad2ant3 1010 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  ( { A }  i^i  { B } )  =  (/) )
1613, 15eqtrd 2198 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  ( dom  { <. A ,  C >. }  i^i  dom  { <. B ,  D >. } )  =  (/) )
17 funun 5232 . . 3  |-  ( ( ( Fun  { <. A ,  C >. }  /\  Fun  { <. B ,  D >. } )  /\  ( dom  { <. A ,  C >. }  i^i  dom  { <. B ,  D >. } )  =  (/) )  ->  Fun  ( { <. A ,  C >. }  u.  { <. B ,  D >. } ) )
184, 8, 16, 17syl21anc 1227 . 2  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  Fun  ( { <. A ,  C >. }  u.  { <. B ,  D >. } ) )
19 df-pr 3583 . . 3  |-  { <. A ,  C >. ,  <. B ,  D >. }  =  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )
2019funeqi 5209 . 2  |-  ( Fun 
{ <. A ,  C >. ,  <. B ,  D >. }  <->  Fun  ( { <. A ,  C >. }  u.  {
<. B ,  D >. } ) )
2118, 20sylibr 133 1  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  Fun  {
<. A ,  C >. , 
<. B ,  D >. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968    = wceq 1343    e. wcel 2136    =/= wne 2336    u. cun 3114    i^i cin 3115   (/)c0 3409   {csn 3576   {cpr 3577   <.cop 3579   dom cdm 4604   Fun wfun 5182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-fun 5190
This theorem is referenced by:  funtpg  5239  funpr  5240  fnprg  5243  2strbasg  12496  2stropg  12497
  Copyright terms: Public domain W3C validator