| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funprg | Unicode version | ||
| Description: A set of two pairs is a function if their first members are different. (Contributed by FL, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| funprg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l 1045 |
. . . 4
| |
| 2 | simp2l 1047 |
. . . 4
| |
| 3 | funsng 5363 |
. . . 4
| |
| 4 | 1, 2, 3 | syl2anc 411 |
. . 3
|
| 5 | simp1r 1046 |
. . . 4
| |
| 6 | simp2r 1048 |
. . . 4
| |
| 7 | funsng 5363 |
. . . 4
| |
| 8 | 5, 6, 7 | syl2anc 411 |
. . 3
|
| 9 | dmsnopg 5196 |
. . . . . 6
| |
| 10 | 2, 9 | syl 14 |
. . . . 5
|
| 11 | dmsnopg 5196 |
. . . . . 6
| |
| 12 | 6, 11 | syl 14 |
. . . . 5
|
| 13 | 10, 12 | ineq12d 3406 |
. . . 4
|
| 14 | disjsn2 3729 |
. . . . 5
| |
| 15 | 14 | 3ad2ant3 1044 |
. . . 4
|
| 16 | 13, 15 | eqtrd 2262 |
. . 3
|
| 17 | funun 5358 |
. . 3
| |
| 18 | 4, 8, 16, 17 | syl21anc 1270 |
. 2
|
| 19 | df-pr 3673 |
. . 3
| |
| 20 | 19 | funeqi 5335 |
. 2
|
| 21 | 18, 20 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-fun 5316 |
| This theorem is referenced by: funtpg 5368 funpr 5369 fnprg 5372 2strbasg 13139 2stropg 13140 |
| Copyright terms: Public domain | W3C validator |