Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funprg | Unicode version |
Description: A set of two pairs is a function if their first members are different. (Contributed by FL, 26-Jun-2011.) |
Ref | Expression |
---|---|
funprg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1011 | . . . 4 | |
2 | simp2l 1013 | . . . 4 | |
3 | funsng 5234 | . . . 4 | |
4 | 1, 2, 3 | syl2anc 409 | . . 3 |
5 | simp1r 1012 | . . . 4 | |
6 | simp2r 1014 | . . . 4 | |
7 | funsng 5234 | . . . 4 | |
8 | 5, 6, 7 | syl2anc 409 | . . 3 |
9 | dmsnopg 5075 | . . . . . 6 | |
10 | 2, 9 | syl 14 | . . . . 5 |
11 | dmsnopg 5075 | . . . . . 6 | |
12 | 6, 11 | syl 14 | . . . . 5 |
13 | 10, 12 | ineq12d 3324 | . . . 4 |
14 | disjsn2 3639 | . . . . 5 | |
15 | 14 | 3ad2ant3 1010 | . . . 4 |
16 | 13, 15 | eqtrd 2198 | . . 3 |
17 | funun 5232 | . . 3 | |
18 | 4, 8, 16, 17 | syl21anc 1227 | . 2 |
19 | df-pr 3583 | . . 3 | |
20 | 19 | funeqi 5209 | . 2 |
21 | 18, 20 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 wne 2336 cun 3114 cin 3115 c0 3409 csn 3576 cpr 3577 cop 3579 cdm 4604 wfun 5182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-fun 5190 |
This theorem is referenced by: funtpg 5239 funpr 5240 fnprg 5243 2strbasg 12496 2stropg 12497 |
Copyright terms: Public domain | W3C validator |