ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funprg Unicode version

Theorem funprg 5308
Description: A set of two pairs is a function if their first members are different. (Contributed by FL, 26-Jun-2011.)
Assertion
Ref Expression
funprg  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  Fun  {
<. A ,  C >. , 
<. B ,  D >. } )

Proof of Theorem funprg
StepHypRef Expression
1 simp1l 1023 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  A  e.  V )
2 simp2l 1025 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  C  e.  X )
3 funsng 5304 . . . 4  |-  ( ( A  e.  V  /\  C  e.  X )  ->  Fun  { <. A ,  C >. } )
41, 2, 3syl2anc 411 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  Fun  {
<. A ,  C >. } )
5 simp1r 1024 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  B  e.  W )
6 simp2r 1026 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  D  e.  Y )
7 funsng 5304 . . . 4  |-  ( ( B  e.  W  /\  D  e.  Y )  ->  Fun  { <. B ,  D >. } )
85, 6, 7syl2anc 411 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  Fun  {
<. B ,  D >. } )
9 dmsnopg 5141 . . . . . 6  |-  ( C  e.  X  ->  dom  {
<. A ,  C >. }  =  { A }
)
102, 9syl 14 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  dom  {
<. A ,  C >. }  =  { A }
)
11 dmsnopg 5141 . . . . . 6  |-  ( D  e.  Y  ->  dom  {
<. B ,  D >. }  =  { B }
)
126, 11syl 14 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  dom  {
<. B ,  D >. }  =  { B }
)
1310, 12ineq12d 3365 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  ( dom  { <. A ,  C >. }  i^i  dom  { <. B ,  D >. } )  =  ( { A }  i^i  { B } ) )
14 disjsn2 3685 . . . . 5  |-  ( A  =/=  B  ->  ( { A }  i^i  { B } )  =  (/) )
15143ad2ant3 1022 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  ( { A }  i^i  { B } )  =  (/) )
1613, 15eqtrd 2229 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  ( dom  { <. A ,  C >. }  i^i  dom  { <. B ,  D >. } )  =  (/) )
17 funun 5302 . . 3  |-  ( ( ( Fun  { <. A ,  C >. }  /\  Fun  { <. B ,  D >. } )  /\  ( dom  { <. A ,  C >. }  i^i  dom  { <. B ,  D >. } )  =  (/) )  ->  Fun  ( { <. A ,  C >. }  u.  { <. B ,  D >. } ) )
184, 8, 16, 17syl21anc 1248 . 2  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  Fun  ( { <. A ,  C >. }  u.  { <. B ,  D >. } ) )
19 df-pr 3629 . . 3  |-  { <. A ,  C >. ,  <. B ,  D >. }  =  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )
2019funeqi 5279 . 2  |-  ( Fun 
{ <. A ,  C >. ,  <. B ,  D >. }  <->  Fun  ( { <. A ,  C >. }  u.  {
<. B ,  D >. } ) )
2118, 20sylibr 134 1  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  Fun  {
<. A ,  C >. , 
<. B ,  D >. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167    =/= wne 2367    u. cun 3155    i^i cin 3156   (/)c0 3450   {csn 3622   {cpr 3623   <.cop 3625   dom cdm 4663   Fun wfun 5252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-fun 5260
This theorem is referenced by:  funtpg  5309  funpr  5310  fnprg  5313  2strbasg  12797  2stropg  12798
  Copyright terms: Public domain W3C validator