ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undifdc Unicode version

Theorem undifdc 6688
Description: Union of complementary parts into whole. This is a case where we can strengthen undifss 3367 from subset to equality. (Contributed by Jim Kingdon, 17-Jun-2022.)
Assertion
Ref Expression
undifdc  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e. 
Fin  /\  B  C_  A
)  ->  A  =  ( B  u.  ( A  \  B ) ) )
Distinct variable groups:    x, A, y   
y, B
Allowed substitution hint:    B( x)

Proof of Theorem undifdc
Dummy variables  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . 4  |-  ( w  =  (/)  ->  w  =  (/) )
2 difeq2 3113 . . . 4  |-  ( w  =  (/)  ->  ( A 
\  w )  =  ( A  \  (/) ) )
31, 2uneq12d 3156 . . 3  |-  ( w  =  (/)  ->  ( w  u.  ( A  \  w ) )  =  ( (/)  u.  ( A  \  (/) ) ) )
43eqeq2d 2100 . 2  |-  ( w  =  (/)  ->  ( A  =  ( w  u.  ( A  \  w
) )  <->  A  =  ( (/)  u.  ( A 
\  (/) ) ) ) )
5 id 19 . . . 4  |-  ( w  =  v  ->  w  =  v )
6 difeq2 3113 . . . 4  |-  ( w  =  v  ->  ( A  \  w )  =  ( A  \  v
) )
75, 6uneq12d 3156 . . 3  |-  ( w  =  v  ->  (
w  u.  ( A 
\  w ) )  =  ( v  u.  ( A  \  v
) ) )
87eqeq2d 2100 . 2  |-  ( w  =  v  ->  ( A  =  ( w  u.  ( A  \  w
) )  <->  A  =  ( v  u.  ( A  \  v ) ) ) )
9 id 19 . . . 4  |-  ( w  =  ( v  u. 
{ z } )  ->  w  =  ( v  u.  { z } ) )
10 difeq2 3113 . . . 4  |-  ( w  =  ( v  u. 
{ z } )  ->  ( A  \  w )  =  ( A  \  ( v  u.  { z } ) ) )
119, 10uneq12d 3156 . . 3  |-  ( w  =  ( v  u. 
{ z } )  ->  ( w  u.  ( A  \  w
) )  =  ( ( v  u.  {
z } )  u.  ( A  \  (
v  u.  { z } ) ) ) )
1211eqeq2d 2100 . 2  |-  ( w  =  ( v  u. 
{ z } )  ->  ( A  =  ( w  u.  ( A  \  w ) )  <-> 
A  =  ( ( v  u.  { z } )  u.  ( A  \  ( v  u. 
{ z } ) ) ) ) )
13 id 19 . . . 4  |-  ( w  =  B  ->  w  =  B )
14 difeq2 3113 . . . 4  |-  ( w  =  B  ->  ( A  \  w )  =  ( A  \  B
) )
1513, 14uneq12d 3156 . . 3  |-  ( w  =  B  ->  (
w  u.  ( A 
\  w ) )  =  ( B  u.  ( A  \  B ) ) )
1615eqeq2d 2100 . 2  |-  ( w  =  B  ->  ( A  =  ( w  u.  ( A  \  w
) )  <->  A  =  ( B  u.  ( A  \  B ) ) ) )
17 un0 3320 . . . 4  |-  ( ( A  \  (/) )  u.  (/) )  =  ( A  \  (/) )
18 uncom 3145 . . . 4  |-  ( ( A  \  (/) )  u.  (/) )  =  ( (/) 
u.  ( A  \  (/) ) )
19 dif0 3357 . . . 4  |-  ( A 
\  (/) )  =  A
2017, 18, 193eqtr3ri 2118 . . 3  |-  A  =  ( (/)  u.  ( A  \  (/) ) )
2120a1i 9 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e. 
Fin  /\  B  C_  A
)  ->  A  =  ( (/)  u.  ( A 
\  (/) ) ) )
22 difundi 3252 . . . . . . 7  |-  ( A 
\  ( v  u. 
{ z } ) )  =  ( ( A  \  v )  i^i  ( A  \  { z } ) )
2322uneq2i 3152 . . . . . 6  |-  ( ( v  u.  { z } )  u.  ( A  \  ( v  u. 
{ z } ) ) )  =  ( ( v  u.  {
z } )  u.  ( ( A  \ 
v )  i^i  ( A  \  { z } ) ) )
24 undi 3248 . . . . . 6  |-  ( ( v  u.  { z } )  u.  (
( A  \  v
)  i^i  ( A  \  { z } ) ) )  =  ( ( ( v  u. 
{ z } )  u.  ( A  \ 
v ) )  i^i  ( ( v  u. 
{ z } )  u.  ( A  \  { z } ) ) )
2523, 24eqtri 2109 . . . . 5  |-  ( ( v  u.  { z } )  u.  ( A  \  ( v  u. 
{ z } ) ) )  =  ( ( ( v  u. 
{ z } )  u.  ( A  \ 
v ) )  i^i  ( ( v  u. 
{ z } )  u.  ( A  \  { z } ) ) )
26 simp3 946 . . . . . . . . . . . 12  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e. 
Fin  /\  B  C_  A
)  ->  B  C_  A
)
2726ad3antrrr 477 . . . . . . . . . . 11  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  ->  B  C_  A )
28 simplrr 504 . . . . . . . . . . . 12  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
z  e.  ( B 
\  v ) )
2928eldifad 3011 . . . . . . . . . . 11  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
z  e.  B )
3027, 29sseldd 3027 . . . . . . . . . 10  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
z  e.  A )
3130snssd 3588 . . . . . . . . 9  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  ->  { z }  C_  A )
32 ssequn1 3171 . . . . . . . . 9  |-  ( { z }  C_  A  <->  ( { z }  u.  A )  =  A )
3331, 32sylib 121 . . . . . . . 8  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( { z }  u.  A )  =  A )
34 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  ->  A  =  ( v  u.  ( A  \  v
) ) )
3534uneq2d 3155 . . . . . . . 8  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( { z }  u.  A )  =  ( { z }  u.  ( v  u.  ( A  \  v
) ) ) )
3633, 35eqtr3d 2123 . . . . . . 7  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  ->  A  =  ( {
z }  u.  (
v  u.  ( A 
\  v ) ) ) )
37 uncom 3145 . . . . . . . . 9  |-  ( v  u.  { z } )  =  ( { z }  u.  v
)
3837uneq1i 3151 . . . . . . . 8  |-  ( ( v  u.  { z } )  u.  ( A  \  v ) )  =  ( ( { z }  u.  v
)  u.  ( A 
\  v ) )
39 unass 3158 . . . . . . . 8  |-  ( ( { z }  u.  v )  u.  ( A  \  v ) )  =  ( { z }  u.  ( v  u.  ( A  \ 
v ) ) )
4038, 39eqtri 2109 . . . . . . 7  |-  ( ( v  u.  { z } )  u.  ( A  \  v ) )  =  ( { z }  u.  ( v  u.  ( A  \ 
v ) ) )
4136, 40syl6reqr 2140 . . . . . 6  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( ( v  u. 
{ z } )  u.  ( A  \ 
v ) )  =  A )
42 unass 3158 . . . . . . . 8  |-  ( ( v  u.  { z } )  u.  ( A  \  { z } ) )  =  ( v  u.  ( { z }  u.  ( A  \  { z } ) ) )
43 uncom 3145 . . . . . . . . . 10  |-  ( { z }  u.  ( A  \  { z } ) )  =  ( ( A  \  {
z } )  u. 
{ z } )
44 simp1 944 . . . . . . . . . . . 12  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e. 
Fin  /\  B  C_  A
)  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
4544ad3antrrr 477 . . . . . . . . . . 11  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
46 dcdifsnid 6277 . . . . . . . . . . 11  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  z  e.  A )  ->  (
( A  \  {
z } )  u. 
{ z } )  =  A )
4745, 30, 46syl2anc 404 . . . . . . . . . 10  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( ( A  \  { z } )  u.  { z } )  =  A )
4843, 47syl5eq 2133 . . . . . . . . 9  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( { z }  u.  ( A  \  { z } ) )  =  A )
4948uneq2d 3155 . . . . . . . 8  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( v  u.  ( { z }  u.  ( A  \  { z } ) ) )  =  ( v  u.  A ) )
5042, 49syl5eq 2133 . . . . . . 7  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( ( v  u. 
{ z } )  u.  ( A  \  { z } ) )  =  ( v  u.  A ) )
51 simplrl 503 . . . . . . . . 9  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
v  C_  B )
5251, 27sstrd 3036 . . . . . . . 8  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
v  C_  A )
53 ssequn1 3171 . . . . . . . 8  |-  ( v 
C_  A  <->  ( v  u.  A )  =  A )
5452, 53sylib 121 . . . . . . 7  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( v  u.  A
)  =  A )
5550, 54eqtrd 2121 . . . . . 6  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( ( v  u. 
{ z } )  u.  ( A  \  { z } ) )  =  A )
5641, 55ineq12d 3203 . . . . 5  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( ( ( v  u.  { z } )  u.  ( A 
\  v ) )  i^i  ( ( v  u.  { z } )  u.  ( A 
\  { z } ) ) )  =  ( A  i^i  A
) )
5725, 56syl5eq 2133 . . . 4  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( ( v  u. 
{ z } )  u.  ( A  \ 
( v  u.  {
z } ) ) )  =  ( A  i^i  A ) )
58 inidm 3210 . . . 4  |-  ( A  i^i  A )  =  A
5957, 58syl6req 2138 . . 3  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  ->  A  =  ( (
v  u.  { z } )  u.  ( A  \  ( v  u. 
{ z } ) ) ) )
6059ex 114 . 2  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  ->  ( A  =  ( v  u.  ( A  \  v
) )  ->  A  =  ( ( v  u.  { z } )  u.  ( A 
\  ( v  u. 
{ z } ) ) ) ) )
61 simp2 945 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e. 
Fin  /\  B  C_  A
)  ->  B  e.  Fin )
624, 8, 12, 16, 21, 60, 61findcard2sd 6662 1  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e. 
Fin  /\  B  C_  A
)  ->  A  =  ( B  u.  ( A  \  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103  DECID wdc 781    /\ w3a 925    = wceq 1290    e. wcel 1439   A.wral 2360    \ cdif 2997    u. cun 2998    i^i cin 2999    C_ wss 3000   (/)c0 3287   {csn 3450   Fincfn 6511
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-if 3398  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-iord 4202  df-on 4204  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-er 6306  df-en 6512  df-fin 6514
This theorem is referenced by:  undiffi  6689
  Copyright terms: Public domain W3C validator