ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undifdc Unicode version

Theorem undifdc 6778
Description: Union of complementary parts into whole. This is a case where we can strengthen undifss 3411 from subset to equality. (Contributed by Jim Kingdon, 17-Jun-2022.)
Assertion
Ref Expression
undifdc  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e. 
Fin  /\  B  C_  A
)  ->  A  =  ( B  u.  ( A  \  B ) ) )
Distinct variable groups:    x, A, y   
y, B
Allowed substitution hint:    B( x)

Proof of Theorem undifdc
Dummy variables  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . 4  |-  ( w  =  (/)  ->  w  =  (/) )
2 difeq2 3156 . . . 4  |-  ( w  =  (/)  ->  ( A 
\  w )  =  ( A  \  (/) ) )
31, 2uneq12d 3199 . . 3  |-  ( w  =  (/)  ->  ( w  u.  ( A  \  w ) )  =  ( (/)  u.  ( A  \  (/) ) ) )
43eqeq2d 2127 . 2  |-  ( w  =  (/)  ->  ( A  =  ( w  u.  ( A  \  w
) )  <->  A  =  ( (/)  u.  ( A 
\  (/) ) ) ) )
5 id 19 . . . 4  |-  ( w  =  v  ->  w  =  v )
6 difeq2 3156 . . . 4  |-  ( w  =  v  ->  ( A  \  w )  =  ( A  \  v
) )
75, 6uneq12d 3199 . . 3  |-  ( w  =  v  ->  (
w  u.  ( A 
\  w ) )  =  ( v  u.  ( A  \  v
) ) )
87eqeq2d 2127 . 2  |-  ( w  =  v  ->  ( A  =  ( w  u.  ( A  \  w
) )  <->  A  =  ( v  u.  ( A  \  v ) ) ) )
9 id 19 . . . 4  |-  ( w  =  ( v  u. 
{ z } )  ->  w  =  ( v  u.  { z } ) )
10 difeq2 3156 . . . 4  |-  ( w  =  ( v  u. 
{ z } )  ->  ( A  \  w )  =  ( A  \  ( v  u.  { z } ) ) )
119, 10uneq12d 3199 . . 3  |-  ( w  =  ( v  u. 
{ z } )  ->  ( w  u.  ( A  \  w
) )  =  ( ( v  u.  {
z } )  u.  ( A  \  (
v  u.  { z } ) ) ) )
1211eqeq2d 2127 . 2  |-  ( w  =  ( v  u. 
{ z } )  ->  ( A  =  ( w  u.  ( A  \  w ) )  <-> 
A  =  ( ( v  u.  { z } )  u.  ( A  \  ( v  u. 
{ z } ) ) ) ) )
13 id 19 . . . 4  |-  ( w  =  B  ->  w  =  B )
14 difeq2 3156 . . . 4  |-  ( w  =  B  ->  ( A  \  w )  =  ( A  \  B
) )
1513, 14uneq12d 3199 . . 3  |-  ( w  =  B  ->  (
w  u.  ( A 
\  w ) )  =  ( B  u.  ( A  \  B ) ) )
1615eqeq2d 2127 . 2  |-  ( w  =  B  ->  ( A  =  ( w  u.  ( A  \  w
) )  <->  A  =  ( B  u.  ( A  \  B ) ) ) )
17 un0 3364 . . . 4  |-  ( ( A  \  (/) )  u.  (/) )  =  ( A  \  (/) )
18 uncom 3188 . . . 4  |-  ( ( A  \  (/) )  u.  (/) )  =  ( (/) 
u.  ( A  \  (/) ) )
19 dif0 3401 . . . 4  |-  ( A 
\  (/) )  =  A
2017, 18, 193eqtr3ri 2145 . . 3  |-  A  =  ( (/)  u.  ( A  \  (/) ) )
2120a1i 9 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e. 
Fin  /\  B  C_  A
)  ->  A  =  ( (/)  u.  ( A 
\  (/) ) ) )
22 difundi 3296 . . . . . . 7  |-  ( A 
\  ( v  u. 
{ z } ) )  =  ( ( A  \  v )  i^i  ( A  \  { z } ) )
2322uneq2i 3195 . . . . . 6  |-  ( ( v  u.  { z } )  u.  ( A  \  ( v  u. 
{ z } ) ) )  =  ( ( v  u.  {
z } )  u.  ( ( A  \ 
v )  i^i  ( A  \  { z } ) ) )
24 undi 3292 . . . . . 6  |-  ( ( v  u.  { z } )  u.  (
( A  \  v
)  i^i  ( A  \  { z } ) ) )  =  ( ( ( v  u. 
{ z } )  u.  ( A  \ 
v ) )  i^i  ( ( v  u. 
{ z } )  u.  ( A  \  { z } ) ) )
2523, 24eqtri 2136 . . . . 5  |-  ( ( v  u.  { z } )  u.  ( A  \  ( v  u. 
{ z } ) ) )  =  ( ( ( v  u. 
{ z } )  u.  ( A  \ 
v ) )  i^i  ( ( v  u. 
{ z } )  u.  ( A  \  { z } ) ) )
26 simp3 966 . . . . . . . . . . . 12  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e. 
Fin  /\  B  C_  A
)  ->  B  C_  A
)
2726ad3antrrr 481 . . . . . . . . . . 11  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  ->  B  C_  A )
28 simplrr 508 . . . . . . . . . . . 12  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
z  e.  ( B 
\  v ) )
2928eldifad 3050 . . . . . . . . . . 11  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
z  e.  B )
3027, 29sseldd 3066 . . . . . . . . . 10  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
z  e.  A )
3130snssd 3633 . . . . . . . . 9  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  ->  { z }  C_  A )
32 ssequn1 3214 . . . . . . . . 9  |-  ( { z }  C_  A  <->  ( { z }  u.  A )  =  A )
3331, 32sylib 121 . . . . . . . 8  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( { z }  u.  A )  =  A )
34 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  ->  A  =  ( v  u.  ( A  \  v
) ) )
3534uneq2d 3198 . . . . . . . 8  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( { z }  u.  A )  =  ( { z }  u.  ( v  u.  ( A  \  v
) ) ) )
3633, 35eqtr3d 2150 . . . . . . 7  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  ->  A  =  ( {
z }  u.  (
v  u.  ( A 
\  v ) ) ) )
37 uncom 3188 . . . . . . . . 9  |-  ( v  u.  { z } )  =  ( { z }  u.  v
)
3837uneq1i 3194 . . . . . . . 8  |-  ( ( v  u.  { z } )  u.  ( A  \  v ) )  =  ( ( { z }  u.  v
)  u.  ( A 
\  v ) )
39 unass 3201 . . . . . . . 8  |-  ( ( { z }  u.  v )  u.  ( A  \  v ) )  =  ( { z }  u.  ( v  u.  ( A  \ 
v ) ) )
4038, 39eqtri 2136 . . . . . . 7  |-  ( ( v  u.  { z } )  u.  ( A  \  v ) )  =  ( { z }  u.  ( v  u.  ( A  \ 
v ) ) )
4136, 40syl6reqr 2167 . . . . . 6  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( ( v  u. 
{ z } )  u.  ( A  \ 
v ) )  =  A )
42 unass 3201 . . . . . . . 8  |-  ( ( v  u.  { z } )  u.  ( A  \  { z } ) )  =  ( v  u.  ( { z }  u.  ( A  \  { z } ) ) )
43 uncom 3188 . . . . . . . . . 10  |-  ( { z }  u.  ( A  \  { z } ) )  =  ( ( A  \  {
z } )  u. 
{ z } )
44 simp1 964 . . . . . . . . . . . 12  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e. 
Fin  /\  B  C_  A
)  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
4544ad3antrrr 481 . . . . . . . . . . 11  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
46 dcdifsnid 6366 . . . . . . . . . . 11  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  z  e.  A )  ->  (
( A  \  {
z } )  u. 
{ z } )  =  A )
4745, 30, 46syl2anc 406 . . . . . . . . . 10  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( ( A  \  { z } )  u.  { z } )  =  A )
4843, 47syl5eq 2160 . . . . . . . . 9  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( { z }  u.  ( A  \  { z } ) )  =  A )
4948uneq2d 3198 . . . . . . . 8  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( v  u.  ( { z }  u.  ( A  \  { z } ) ) )  =  ( v  u.  A ) )
5042, 49syl5eq 2160 . . . . . . 7  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( ( v  u. 
{ z } )  u.  ( A  \  { z } ) )  =  ( v  u.  A ) )
51 simplrl 507 . . . . . . . . 9  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
v  C_  B )
5251, 27sstrd 3075 . . . . . . . 8  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
v  C_  A )
53 ssequn1 3214 . . . . . . . 8  |-  ( v 
C_  A  <->  ( v  u.  A )  =  A )
5452, 53sylib 121 . . . . . . 7  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( v  u.  A
)  =  A )
5550, 54eqtrd 2148 . . . . . 6  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( ( v  u. 
{ z } )  u.  ( A  \  { z } ) )  =  A )
5641, 55ineq12d 3246 . . . . 5  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( ( ( v  u.  { z } )  u.  ( A 
\  v ) )  i^i  ( ( v  u.  { z } )  u.  ( A 
\  { z } ) ) )  =  ( A  i^i  A
) )
5725, 56syl5eq 2160 . . . 4  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( ( v  u. 
{ z } )  u.  ( A  \ 
( v  u.  {
z } ) ) )  =  ( A  i^i  A ) )
58 inidm 3253 . . . 4  |-  ( A  i^i  A )  =  A
5957, 58syl6req 2165 . . 3  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  ->  A  =  ( (
v  u.  { z } )  u.  ( A  \  ( v  u. 
{ z } ) ) ) )
6059ex 114 . 2  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  ->  ( A  =  ( v  u.  ( A  \  v
) )  ->  A  =  ( ( v  u.  { z } )  u.  ( A 
\  ( v  u. 
{ z } ) ) ) ) )
61 simp2 965 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e. 
Fin  /\  B  C_  A
)  ->  B  e.  Fin )
624, 8, 12, 16, 21, 60, 61findcard2sd 6752 1  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e. 
Fin  /\  B  C_  A
)  ->  A  =  ( B  u.  ( A  \  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103  DECID wdc 802    /\ w3a 945    = wceq 1314    e. wcel 1463   A.wral 2391    \ cdif 3036    u. cun 3037    i^i cin 3038    C_ wss 3039   (/)c0 3331   {csn 3495   Fincfn 6600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-iord 4256  df-on 4258  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-er 6395  df-en 6601  df-fin 6603
This theorem is referenced by:  undiffi  6779
  Copyright terms: Public domain W3C validator