ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undifdc Unicode version

Theorem undifdc 6559
Description: Union of complementary parts into whole. This is a case where we can strengthen undifss 3344 from subset to equality. (Contributed by Jim Kingdon, 17-Jun-2022.)
Assertion
Ref Expression
undifdc  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e. 
Fin  /\  B  C_  A
)  ->  A  =  ( B  u.  ( A  \  B ) ) )
Distinct variable groups:    x, A, y   
y, B
Allowed substitution hint:    B( x)

Proof of Theorem undifdc
Dummy variables  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . 4  |-  ( w  =  (/)  ->  w  =  (/) )
2 difeq2 3096 . . . 4  |-  ( w  =  (/)  ->  ( A 
\  w )  =  ( A  \  (/) ) )
31, 2uneq12d 3139 . . 3  |-  ( w  =  (/)  ->  ( w  u.  ( A  \  w ) )  =  ( (/)  u.  ( A  \  (/) ) ) )
43eqeq2d 2094 . 2  |-  ( w  =  (/)  ->  ( A  =  ( w  u.  ( A  \  w
) )  <->  A  =  ( (/)  u.  ( A 
\  (/) ) ) ) )
5 id 19 . . . 4  |-  ( w  =  v  ->  w  =  v )
6 difeq2 3096 . . . 4  |-  ( w  =  v  ->  ( A  \  w )  =  ( A  \  v
) )
75, 6uneq12d 3139 . . 3  |-  ( w  =  v  ->  (
w  u.  ( A 
\  w ) )  =  ( v  u.  ( A  \  v
) ) )
87eqeq2d 2094 . 2  |-  ( w  =  v  ->  ( A  =  ( w  u.  ( A  \  w
) )  <->  A  =  ( v  u.  ( A  \  v ) ) ) )
9 id 19 . . . 4  |-  ( w  =  ( v  u. 
{ z } )  ->  w  =  ( v  u.  { z } ) )
10 difeq2 3096 . . . 4  |-  ( w  =  ( v  u. 
{ z } )  ->  ( A  \  w )  =  ( A  \  ( v  u.  { z } ) ) )
119, 10uneq12d 3139 . . 3  |-  ( w  =  ( v  u. 
{ z } )  ->  ( w  u.  ( A  \  w
) )  =  ( ( v  u.  {
z } )  u.  ( A  \  (
v  u.  { z } ) ) ) )
1211eqeq2d 2094 . 2  |-  ( w  =  ( v  u. 
{ z } )  ->  ( A  =  ( w  u.  ( A  \  w ) )  <-> 
A  =  ( ( v  u.  { z } )  u.  ( A  \  ( v  u. 
{ z } ) ) ) ) )
13 id 19 . . . 4  |-  ( w  =  B  ->  w  =  B )
14 difeq2 3096 . . . 4  |-  ( w  =  B  ->  ( A  \  w )  =  ( A  \  B
) )
1513, 14uneq12d 3139 . . 3  |-  ( w  =  B  ->  (
w  u.  ( A 
\  w ) )  =  ( B  u.  ( A  \  B ) ) )
1615eqeq2d 2094 . 2  |-  ( w  =  B  ->  ( A  =  ( w  u.  ( A  \  w
) )  <->  A  =  ( B  u.  ( A  \  B ) ) ) )
17 un0 3299 . . . 4  |-  ( ( A  \  (/) )  u.  (/) )  =  ( A  \  (/) )
18 uncom 3128 . . . 4  |-  ( ( A  \  (/) )  u.  (/) )  =  ( (/) 
u.  ( A  \  (/) ) )
19 dif0 3335 . . . 4  |-  ( A 
\  (/) )  =  A
2017, 18, 193eqtr3ri 2112 . . 3  |-  A  =  ( (/)  u.  ( A  \  (/) ) )
2120a1i 9 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e. 
Fin  /\  B  C_  A
)  ->  A  =  ( (/)  u.  ( A 
\  (/) ) ) )
22 difundi 3234 . . . . . . 7  |-  ( A 
\  ( v  u. 
{ z } ) )  =  ( ( A  \  v )  i^i  ( A  \  { z } ) )
2322uneq2i 3135 . . . . . 6  |-  ( ( v  u.  { z } )  u.  ( A  \  ( v  u. 
{ z } ) ) )  =  ( ( v  u.  {
z } )  u.  ( ( A  \ 
v )  i^i  ( A  \  { z } ) ) )
24 undi 3230 . . . . . 6  |-  ( ( v  u.  { z } )  u.  (
( A  \  v
)  i^i  ( A  \  { z } ) ) )  =  ( ( ( v  u. 
{ z } )  u.  ( A  \ 
v ) )  i^i  ( ( v  u. 
{ z } )  u.  ( A  \  { z } ) ) )
2523, 24eqtri 2103 . . . . 5  |-  ( ( v  u.  { z } )  u.  ( A  \  ( v  u. 
{ z } ) ) )  =  ( ( ( v  u. 
{ z } )  u.  ( A  \ 
v ) )  i^i  ( ( v  u. 
{ z } )  u.  ( A  \  { z } ) ) )
26 simp3 941 . . . . . . . . . . . 12  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e. 
Fin  /\  B  C_  A
)  ->  B  C_  A
)
2726ad3antrrr 476 . . . . . . . . . . 11  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  ->  B  C_  A )
28 simplrr 503 . . . . . . . . . . . 12  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
z  e.  ( B 
\  v ) )
2928eldifad 2995 . . . . . . . . . . 11  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
z  e.  B )
3027, 29sseldd 3011 . . . . . . . . . 10  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
z  e.  A )
3130snssd 3556 . . . . . . . . 9  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  ->  { z }  C_  A )
32 ssequn1 3154 . . . . . . . . 9  |-  ( { z }  C_  A  <->  ( { z }  u.  A )  =  A )
3331, 32sylib 120 . . . . . . . 8  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( { z }  u.  A )  =  A )
34 simpr 108 . . . . . . . . 9  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  ->  A  =  ( v  u.  ( A  \  v
) ) )
3534uneq2d 3138 . . . . . . . 8  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( { z }  u.  A )  =  ( { z }  u.  ( v  u.  ( A  \  v
) ) ) )
3633, 35eqtr3d 2117 . . . . . . 7  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  ->  A  =  ( {
z }  u.  (
v  u.  ( A 
\  v ) ) ) )
37 uncom 3128 . . . . . . . . 9  |-  ( v  u.  { z } )  =  ( { z }  u.  v
)
3837uneq1i 3134 . . . . . . . 8  |-  ( ( v  u.  { z } )  u.  ( A  \  v ) )  =  ( ( { z }  u.  v
)  u.  ( A 
\  v ) )
39 unass 3141 . . . . . . . 8  |-  ( ( { z }  u.  v )  u.  ( A  \  v ) )  =  ( { z }  u.  ( v  u.  ( A  \ 
v ) ) )
4038, 39eqtri 2103 . . . . . . 7  |-  ( ( v  u.  { z } )  u.  ( A  \  v ) )  =  ( { z }  u.  ( v  u.  ( A  \ 
v ) ) )
4136, 40syl6reqr 2134 . . . . . 6  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( ( v  u. 
{ z } )  u.  ( A  \ 
v ) )  =  A )
42 unass 3141 . . . . . . . 8  |-  ( ( v  u.  { z } )  u.  ( A  \  { z } ) )  =  ( v  u.  ( { z }  u.  ( A  \  { z } ) ) )
43 uncom 3128 . . . . . . . . . 10  |-  ( { z }  u.  ( A  \  { z } ) )  =  ( ( A  \  {
z } )  u. 
{ z } )
44 simp1 939 . . . . . . . . . . . 12  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e. 
Fin  /\  B  C_  A
)  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
4544ad3antrrr 476 . . . . . . . . . . 11  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
46 dcdifsnid 6193 . . . . . . . . . . 11  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  z  e.  A )  ->  (
( A  \  {
z } )  u. 
{ z } )  =  A )
4745, 30, 46syl2anc 403 . . . . . . . . . 10  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( ( A  \  { z } )  u.  { z } )  =  A )
4843, 47syl5eq 2127 . . . . . . . . 9  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( { z }  u.  ( A  \  { z } ) )  =  A )
4948uneq2d 3138 . . . . . . . 8  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( v  u.  ( { z }  u.  ( A  \  { z } ) ) )  =  ( v  u.  A ) )
5042, 49syl5eq 2127 . . . . . . 7  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( ( v  u. 
{ z } )  u.  ( A  \  { z } ) )  =  ( v  u.  A ) )
51 simplrl 502 . . . . . . . . 9  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
v  C_  B )
5251, 27sstrd 3020 . . . . . . . 8  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
v  C_  A )
53 ssequn1 3154 . . . . . . . 8  |-  ( v 
C_  A  <->  ( v  u.  A )  =  A )
5452, 53sylib 120 . . . . . . 7  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( v  u.  A
)  =  A )
5550, 54eqtrd 2115 . . . . . 6  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( ( v  u. 
{ z } )  u.  ( A  \  { z } ) )  =  A )
5641, 55ineq12d 3186 . . . . 5  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( ( ( v  u.  { z } )  u.  ( A 
\  v ) )  i^i  ( ( v  u.  { z } )  u.  ( A 
\  { z } ) ) )  =  ( A  i^i  A
) )
5725, 56syl5eq 2127 . . . 4  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( ( v  u. 
{ z } )  u.  ( A  \ 
( v  u.  {
z } ) ) )  =  ( A  i^i  A ) )
58 inidm 3193 . . . 4  |-  ( A  i^i  A )  =  A
5957, 58syl6req 2132 . . 3  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  ->  A  =  ( (
v  u.  { z } )  u.  ( A  \  ( v  u. 
{ z } ) ) ) )
6059ex 113 . 2  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  ->  ( A  =  ( v  u.  ( A  \  v
) )  ->  A  =  ( ( v  u.  { z } )  u.  ( A 
\  ( v  u. 
{ z } ) ) ) ) )
61 simp2 940 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e. 
Fin  /\  B  C_  A
)  ->  B  e.  Fin )
624, 8, 12, 16, 21, 60, 61findcard2sd 6536 1  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e. 
Fin  /\  B  C_  A
)  ->  A  =  ( B  u.  ( A  \  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102  DECID wdc 776    /\ w3a 920    = wceq 1285    e. wcel 1434   A.wral 2353    \ cdif 2981    u. cun 2982    i^i cin 2983    C_ wss 2984   (/)c0 3269   {csn 3422   Fincfn 6385
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-iinf 4365
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-if 3374  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4083  df-iord 4156  df-on 4158  df-suc 4161  df-iom 4368  df-xp 4405  df-rel 4406  df-cnv 4407  df-co 4408  df-dm 4409  df-rn 4410  df-res 4411  df-ima 4412  df-iota 4932  df-fun 4969  df-fn 4970  df-f 4971  df-f1 4972  df-fo 4973  df-f1o 4974  df-fv 4975  df-er 6220  df-en 6386  df-fin 6388
This theorem is referenced by:  undiffi  6560
  Copyright terms: Public domain W3C validator