ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undifdc Unicode version

Theorem undifdc 6812
Description: Union of complementary parts into whole. This is a case where we can strengthen undifss 3443 from subset to equality. (Contributed by Jim Kingdon, 17-Jun-2022.)
Assertion
Ref Expression
undifdc  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e. 
Fin  /\  B  C_  A
)  ->  A  =  ( B  u.  ( A  \  B ) ) )
Distinct variable groups:    x, A, y   
y, B
Allowed substitution hint:    B( x)

Proof of Theorem undifdc
Dummy variables  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . 4  |-  ( w  =  (/)  ->  w  =  (/) )
2 difeq2 3188 . . . 4  |-  ( w  =  (/)  ->  ( A 
\  w )  =  ( A  \  (/) ) )
31, 2uneq12d 3231 . . 3  |-  ( w  =  (/)  ->  ( w  u.  ( A  \  w ) )  =  ( (/)  u.  ( A  \  (/) ) ) )
43eqeq2d 2151 . 2  |-  ( w  =  (/)  ->  ( A  =  ( w  u.  ( A  \  w
) )  <->  A  =  ( (/)  u.  ( A 
\  (/) ) ) ) )
5 id 19 . . . 4  |-  ( w  =  v  ->  w  =  v )
6 difeq2 3188 . . . 4  |-  ( w  =  v  ->  ( A  \  w )  =  ( A  \  v
) )
75, 6uneq12d 3231 . . 3  |-  ( w  =  v  ->  (
w  u.  ( A 
\  w ) )  =  ( v  u.  ( A  \  v
) ) )
87eqeq2d 2151 . 2  |-  ( w  =  v  ->  ( A  =  ( w  u.  ( A  \  w
) )  <->  A  =  ( v  u.  ( A  \  v ) ) ) )
9 id 19 . . . 4  |-  ( w  =  ( v  u. 
{ z } )  ->  w  =  ( v  u.  { z } ) )
10 difeq2 3188 . . . 4  |-  ( w  =  ( v  u. 
{ z } )  ->  ( A  \  w )  =  ( A  \  ( v  u.  { z } ) ) )
119, 10uneq12d 3231 . . 3  |-  ( w  =  ( v  u. 
{ z } )  ->  ( w  u.  ( A  \  w
) )  =  ( ( v  u.  {
z } )  u.  ( A  \  (
v  u.  { z } ) ) ) )
1211eqeq2d 2151 . 2  |-  ( w  =  ( v  u. 
{ z } )  ->  ( A  =  ( w  u.  ( A  \  w ) )  <-> 
A  =  ( ( v  u.  { z } )  u.  ( A  \  ( v  u. 
{ z } ) ) ) ) )
13 id 19 . . . 4  |-  ( w  =  B  ->  w  =  B )
14 difeq2 3188 . . . 4  |-  ( w  =  B  ->  ( A  \  w )  =  ( A  \  B
) )
1513, 14uneq12d 3231 . . 3  |-  ( w  =  B  ->  (
w  u.  ( A 
\  w ) )  =  ( B  u.  ( A  \  B ) ) )
1615eqeq2d 2151 . 2  |-  ( w  =  B  ->  ( A  =  ( w  u.  ( A  \  w
) )  <->  A  =  ( B  u.  ( A  \  B ) ) ) )
17 un0 3396 . . . 4  |-  ( ( A  \  (/) )  u.  (/) )  =  ( A  \  (/) )
18 uncom 3220 . . . 4  |-  ( ( A  \  (/) )  u.  (/) )  =  ( (/) 
u.  ( A  \  (/) ) )
19 dif0 3433 . . . 4  |-  ( A 
\  (/) )  =  A
2017, 18, 193eqtr3ri 2169 . . 3  |-  A  =  ( (/)  u.  ( A  \  (/) ) )
2120a1i 9 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e. 
Fin  /\  B  C_  A
)  ->  A  =  ( (/)  u.  ( A 
\  (/) ) ) )
22 difundi 3328 . . . . . . 7  |-  ( A 
\  ( v  u. 
{ z } ) )  =  ( ( A  \  v )  i^i  ( A  \  { z } ) )
2322uneq2i 3227 . . . . . 6  |-  ( ( v  u.  { z } )  u.  ( A  \  ( v  u. 
{ z } ) ) )  =  ( ( v  u.  {
z } )  u.  ( ( A  \ 
v )  i^i  ( A  \  { z } ) ) )
24 undi 3324 . . . . . 6  |-  ( ( v  u.  { z } )  u.  (
( A  \  v
)  i^i  ( A  \  { z } ) ) )  =  ( ( ( v  u. 
{ z } )  u.  ( A  \ 
v ) )  i^i  ( ( v  u. 
{ z } )  u.  ( A  \  { z } ) ) )
2523, 24eqtri 2160 . . . . 5  |-  ( ( v  u.  { z } )  u.  ( A  \  ( v  u. 
{ z } ) ) )  =  ( ( ( v  u. 
{ z } )  u.  ( A  \ 
v ) )  i^i  ( ( v  u. 
{ z } )  u.  ( A  \  { z } ) ) )
26 simp3 983 . . . . . . . . . . . 12  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e. 
Fin  /\  B  C_  A
)  ->  B  C_  A
)
2726ad3antrrr 483 . . . . . . . . . . 11  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  ->  B  C_  A )
28 simplrr 525 . . . . . . . . . . . 12  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
z  e.  ( B 
\  v ) )
2928eldifad 3082 . . . . . . . . . . 11  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
z  e.  B )
3027, 29sseldd 3098 . . . . . . . . . 10  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
z  e.  A )
3130snssd 3665 . . . . . . . . 9  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  ->  { z }  C_  A )
32 ssequn1 3246 . . . . . . . . 9  |-  ( { z }  C_  A  <->  ( { z }  u.  A )  =  A )
3331, 32sylib 121 . . . . . . . 8  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( { z }  u.  A )  =  A )
34 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  ->  A  =  ( v  u.  ( A  \  v
) ) )
3534uneq2d 3230 . . . . . . . 8  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( { z }  u.  A )  =  ( { z }  u.  ( v  u.  ( A  \  v
) ) ) )
3633, 35eqtr3d 2174 . . . . . . 7  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  ->  A  =  ( {
z }  u.  (
v  u.  ( A 
\  v ) ) ) )
37 uncom 3220 . . . . . . . . 9  |-  ( v  u.  { z } )  =  ( { z }  u.  v
)
3837uneq1i 3226 . . . . . . . 8  |-  ( ( v  u.  { z } )  u.  ( A  \  v ) )  =  ( ( { z }  u.  v
)  u.  ( A 
\  v ) )
39 unass 3233 . . . . . . . 8  |-  ( ( { z }  u.  v )  u.  ( A  \  v ) )  =  ( { z }  u.  ( v  u.  ( A  \ 
v ) ) )
4038, 39eqtri 2160 . . . . . . 7  |-  ( ( v  u.  { z } )  u.  ( A  \  v ) )  =  ( { z }  u.  ( v  u.  ( A  \ 
v ) ) )
4136, 40syl6reqr 2191 . . . . . 6  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( ( v  u. 
{ z } )  u.  ( A  \ 
v ) )  =  A )
42 unass 3233 . . . . . . . 8  |-  ( ( v  u.  { z } )  u.  ( A  \  { z } ) )  =  ( v  u.  ( { z }  u.  ( A  \  { z } ) ) )
43 uncom 3220 . . . . . . . . . 10  |-  ( { z }  u.  ( A  \  { z } ) )  =  ( ( A  \  {
z } )  u. 
{ z } )
44 simp1 981 . . . . . . . . . . . 12  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e. 
Fin  /\  B  C_  A
)  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
4544ad3antrrr 483 . . . . . . . . . . 11  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
46 dcdifsnid 6400 . . . . . . . . . . 11  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  z  e.  A )  ->  (
( A  \  {
z } )  u. 
{ z } )  =  A )
4745, 30, 46syl2anc 408 . . . . . . . . . 10  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( ( A  \  { z } )  u.  { z } )  =  A )
4843, 47syl5eq 2184 . . . . . . . . 9  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( { z }  u.  ( A  \  { z } ) )  =  A )
4948uneq2d 3230 . . . . . . . 8  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( v  u.  ( { z }  u.  ( A  \  { z } ) ) )  =  ( v  u.  A ) )
5042, 49syl5eq 2184 . . . . . . 7  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( ( v  u. 
{ z } )  u.  ( A  \  { z } ) )  =  ( v  u.  A ) )
51 simplrl 524 . . . . . . . . 9  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
v  C_  B )
5251, 27sstrd 3107 . . . . . . . 8  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
v  C_  A )
53 ssequn1 3246 . . . . . . . 8  |-  ( v 
C_  A  <->  ( v  u.  A )  =  A )
5452, 53sylib 121 . . . . . . 7  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( v  u.  A
)  =  A )
5550, 54eqtrd 2172 . . . . . 6  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( ( v  u. 
{ z } )  u.  ( A  \  { z } ) )  =  A )
5641, 55ineq12d 3278 . . . . 5  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( ( ( v  u.  { z } )  u.  ( A 
\  v ) )  i^i  ( ( v  u.  { z } )  u.  ( A 
\  { z } ) ) )  =  ( A  i^i  A
) )
5725, 56syl5eq 2184 . . . 4  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( ( v  u. 
{ z } )  u.  ( A  \ 
( v  u.  {
z } ) ) )  =  ( A  i^i  A ) )
58 inidm 3285 . . . 4  |-  ( A  i^i  A )  =  A
5957, 58syl6req 2189 . . 3  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  ->  A  =  ( (
v  u.  { z } )  u.  ( A  \  ( v  u. 
{ z } ) ) ) )
6059ex 114 . 2  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  ->  ( A  =  ( v  u.  ( A  \  v
) )  ->  A  =  ( ( v  u.  { z } )  u.  ( A 
\  ( v  u. 
{ z } ) ) ) ) )
61 simp2 982 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e. 
Fin  /\  B  C_  A
)  ->  B  e.  Fin )
624, 8, 12, 16, 21, 60, 61findcard2sd 6786 1  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e. 
Fin  /\  B  C_  A
)  ->  A  =  ( B  u.  ( A  \  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103  DECID wdc 819    /\ w3a 962    = wceq 1331    e. wcel 1480   A.wral 2416    \ cdif 3068    u. cun 3069    i^i cin 3070    C_ wss 3071   (/)c0 3363   {csn 3527   Fincfn 6634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-er 6429  df-en 6635  df-fin 6637
This theorem is referenced by:  undiffi  6813
  Copyright terms: Public domain W3C validator