ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undifdc Unicode version

Theorem undifdc 6901
Description: Union of complementary parts into whole. This is a case where we can strengthen undifss 3495 from subset to equality. (Contributed by Jim Kingdon, 17-Jun-2022.)
Assertion
Ref Expression
undifdc  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e. 
Fin  /\  B  C_  A
)  ->  A  =  ( B  u.  ( A  \  B ) ) )
Distinct variable groups:    x, A, y   
y, B
Allowed substitution hint:    B( x)

Proof of Theorem undifdc
Dummy variables  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . 4  |-  ( w  =  (/)  ->  w  =  (/) )
2 difeq2 3239 . . . 4  |-  ( w  =  (/)  ->  ( A 
\  w )  =  ( A  \  (/) ) )
31, 2uneq12d 3282 . . 3  |-  ( w  =  (/)  ->  ( w  u.  ( A  \  w ) )  =  ( (/)  u.  ( A  \  (/) ) ) )
43eqeq2d 2182 . 2  |-  ( w  =  (/)  ->  ( A  =  ( w  u.  ( A  \  w
) )  <->  A  =  ( (/)  u.  ( A 
\  (/) ) ) ) )
5 id 19 . . . 4  |-  ( w  =  v  ->  w  =  v )
6 difeq2 3239 . . . 4  |-  ( w  =  v  ->  ( A  \  w )  =  ( A  \  v
) )
75, 6uneq12d 3282 . . 3  |-  ( w  =  v  ->  (
w  u.  ( A 
\  w ) )  =  ( v  u.  ( A  \  v
) ) )
87eqeq2d 2182 . 2  |-  ( w  =  v  ->  ( A  =  ( w  u.  ( A  \  w
) )  <->  A  =  ( v  u.  ( A  \  v ) ) ) )
9 id 19 . . . 4  |-  ( w  =  ( v  u. 
{ z } )  ->  w  =  ( v  u.  { z } ) )
10 difeq2 3239 . . . 4  |-  ( w  =  ( v  u. 
{ z } )  ->  ( A  \  w )  =  ( A  \  ( v  u.  { z } ) ) )
119, 10uneq12d 3282 . . 3  |-  ( w  =  ( v  u. 
{ z } )  ->  ( w  u.  ( A  \  w
) )  =  ( ( v  u.  {
z } )  u.  ( A  \  (
v  u.  { z } ) ) ) )
1211eqeq2d 2182 . 2  |-  ( w  =  ( v  u. 
{ z } )  ->  ( A  =  ( w  u.  ( A  \  w ) )  <-> 
A  =  ( ( v  u.  { z } )  u.  ( A  \  ( v  u. 
{ z } ) ) ) ) )
13 id 19 . . . 4  |-  ( w  =  B  ->  w  =  B )
14 difeq2 3239 . . . 4  |-  ( w  =  B  ->  ( A  \  w )  =  ( A  \  B
) )
1513, 14uneq12d 3282 . . 3  |-  ( w  =  B  ->  (
w  u.  ( A 
\  w ) )  =  ( B  u.  ( A  \  B ) ) )
1615eqeq2d 2182 . 2  |-  ( w  =  B  ->  ( A  =  ( w  u.  ( A  \  w
) )  <->  A  =  ( B  u.  ( A  \  B ) ) ) )
17 un0 3448 . . . 4  |-  ( ( A  \  (/) )  u.  (/) )  =  ( A  \  (/) )
18 uncom 3271 . . . 4  |-  ( ( A  \  (/) )  u.  (/) )  =  ( (/) 
u.  ( A  \  (/) ) )
19 dif0 3485 . . . 4  |-  ( A 
\  (/) )  =  A
2017, 18, 193eqtr3ri 2200 . . 3  |-  A  =  ( (/)  u.  ( A  \  (/) ) )
2120a1i 9 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e. 
Fin  /\  B  C_  A
)  ->  A  =  ( (/)  u.  ( A 
\  (/) ) ) )
22 difundi 3379 . . . . . . 7  |-  ( A 
\  ( v  u. 
{ z } ) )  =  ( ( A  \  v )  i^i  ( A  \  { z } ) )
2322uneq2i 3278 . . . . . 6  |-  ( ( v  u.  { z } )  u.  ( A  \  ( v  u. 
{ z } ) ) )  =  ( ( v  u.  {
z } )  u.  ( ( A  \ 
v )  i^i  ( A  \  { z } ) ) )
24 undi 3375 . . . . . 6  |-  ( ( v  u.  { z } )  u.  (
( A  \  v
)  i^i  ( A  \  { z } ) ) )  =  ( ( ( v  u. 
{ z } )  u.  ( A  \ 
v ) )  i^i  ( ( v  u. 
{ z } )  u.  ( A  \  { z } ) ) )
2523, 24eqtri 2191 . . . . 5  |-  ( ( v  u.  { z } )  u.  ( A  \  ( v  u. 
{ z } ) ) )  =  ( ( ( v  u. 
{ z } )  u.  ( A  \ 
v ) )  i^i  ( ( v  u. 
{ z } )  u.  ( A  \  { z } ) ) )
26 uncom 3271 . . . . . . . . 9  |-  ( v  u.  { z } )  =  ( { z }  u.  v
)
2726uneq1i 3277 . . . . . . . 8  |-  ( ( v  u.  { z } )  u.  ( A  \  v ) )  =  ( ( { z }  u.  v
)  u.  ( A 
\  v ) )
28 unass 3284 . . . . . . . 8  |-  ( ( { z }  u.  v )  u.  ( A  \  v ) )  =  ( { z }  u.  ( v  u.  ( A  \ 
v ) ) )
2927, 28eqtri 2191 . . . . . . 7  |-  ( ( v  u.  { z } )  u.  ( A  \  v ) )  =  ( { z }  u.  ( v  u.  ( A  \ 
v ) ) )
30 simp3 994 . . . . . . . . . . . 12  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e. 
Fin  /\  B  C_  A
)  ->  B  C_  A
)
3130ad3antrrr 489 . . . . . . . . . . 11  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  ->  B  C_  A )
32 simplrr 531 . . . . . . . . . . . 12  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
z  e.  ( B 
\  v ) )
3332eldifad 3132 . . . . . . . . . . 11  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
z  e.  B )
3431, 33sseldd 3148 . . . . . . . . . 10  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
z  e.  A )
3534snssd 3725 . . . . . . . . 9  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  ->  { z }  C_  A )
36 ssequn1 3297 . . . . . . . . 9  |-  ( { z }  C_  A  <->  ( { z }  u.  A )  =  A )
3735, 36sylib 121 . . . . . . . 8  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( { z }  u.  A )  =  A )
38 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  ->  A  =  ( v  u.  ( A  \  v
) ) )
3938uneq2d 3281 . . . . . . . 8  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( { z }  u.  A )  =  ( { z }  u.  ( v  u.  ( A  \  v
) ) ) )
4037, 39eqtr3d 2205 . . . . . . 7  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  ->  A  =  ( {
z }  u.  (
v  u.  ( A 
\  v ) ) ) )
4129, 40eqtr4id 2222 . . . . . 6  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( ( v  u. 
{ z } )  u.  ( A  \ 
v ) )  =  A )
42 unass 3284 . . . . . . . 8  |-  ( ( v  u.  { z } )  u.  ( A  \  { z } ) )  =  ( v  u.  ( { z }  u.  ( A  \  { z } ) ) )
43 uncom 3271 . . . . . . . . . 10  |-  ( { z }  u.  ( A  \  { z } ) )  =  ( ( A  \  {
z } )  u. 
{ z } )
44 simp1 992 . . . . . . . . . . . 12  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e. 
Fin  /\  B  C_  A
)  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
4544ad3antrrr 489 . . . . . . . . . . 11  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
46 dcdifsnid 6483 . . . . . . . . . . 11  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  z  e.  A )  ->  (
( A  \  {
z } )  u. 
{ z } )  =  A )
4745, 34, 46syl2anc 409 . . . . . . . . . 10  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( ( A  \  { z } )  u.  { z } )  =  A )
4843, 47eqtrid 2215 . . . . . . . . 9  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( { z }  u.  ( A  \  { z } ) )  =  A )
4948uneq2d 3281 . . . . . . . 8  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( v  u.  ( { z }  u.  ( A  \  { z } ) ) )  =  ( v  u.  A ) )
5042, 49eqtrid 2215 . . . . . . 7  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( ( v  u. 
{ z } )  u.  ( A  \  { z } ) )  =  ( v  u.  A ) )
51 simplrl 530 . . . . . . . . 9  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
v  C_  B )
5251, 31sstrd 3157 . . . . . . . 8  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
v  C_  A )
53 ssequn1 3297 . . . . . . . 8  |-  ( v 
C_  A  <->  ( v  u.  A )  =  A )
5452, 53sylib 121 . . . . . . 7  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( v  u.  A
)  =  A )
5550, 54eqtrd 2203 . . . . . 6  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( ( v  u. 
{ z } )  u.  ( A  \  { z } ) )  =  A )
5641, 55ineq12d 3329 . . . . 5  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( ( ( v  u.  { z } )  u.  ( A 
\  v ) )  i^i  ( ( v  u.  { z } )  u.  ( A 
\  { z } ) ) )  =  ( A  i^i  A
) )
5725, 56eqtrid 2215 . . . 4  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  -> 
( ( v  u. 
{ z } )  u.  ( A  \ 
( v  u.  {
z } ) ) )  =  ( A  i^i  A ) )
58 inidm 3336 . . . 4  |-  ( A  i^i  A )  =  A
5957, 58eqtr2di 2220 . . 3  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  /\  A  =  ( v  u.  ( A  \  v
) ) )  ->  A  =  ( (
v  u.  { z } )  u.  ( A  \  ( v  u. 
{ z } ) ) ) )
6059ex 114 . 2  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  /\  v  e.  Fin )  /\  ( v  C_  B  /\  z  e.  ( B  \  v ) ) )  ->  ( A  =  ( v  u.  ( A  \  v
) )  ->  A  =  ( ( v  u.  { z } )  u.  ( A 
\  ( v  u. 
{ z } ) ) ) ) )
61 simp2 993 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e. 
Fin  /\  B  C_  A
)  ->  B  e.  Fin )
624, 8, 12, 16, 21, 60, 61findcard2sd 6870 1  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e. 
Fin  /\  B  C_  A
)  ->  A  =  ( B  u.  ( A  \  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103  DECID wdc 829    /\ w3a 973    = wceq 1348    e. wcel 2141   A.wral 2448    \ cdif 3118    u. cun 3119    i^i cin 3120    C_ wss 3121   (/)c0 3414   {csn 3583   Fincfn 6718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-er 6513  df-en 6719  df-fin 6721
This theorem is referenced by:  undiffi  6902
  Copyright terms: Public domain W3C validator