| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isunitd | Unicode version | ||
| Description: Property of being a unit of a ring. A unit is an element that left- and right-divides one. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 8-Dec-2015.) |
| Ref | Expression |
|---|---|
| isunitd.1 |
|
| isunitd.2 |
|
| isunitd.3 |
|
| isunitd.4 |
|
| isunitd.5 |
|
| isunitd.r |
|
| Ref | Expression |
|---|---|
| isunitd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isunitd.1 |
. . . 4
| |
| 2 | df-unit 13927 |
. . . . 5
| |
| 3 | fveq2 5589 |
. . . . . . . 8
| |
| 4 | 2fveq3 5594 |
. . . . . . . 8
| |
| 5 | 3, 4 | ineq12d 3379 |
. . . . . . 7
|
| 6 | 5 | cnveqd 4862 |
. . . . . 6
|
| 7 | fveq2 5589 |
. . . . . . 7
| |
| 8 | 7 | sneqd 3651 |
. . . . . 6
|
| 9 | 6, 8 | imaeq12d 5032 |
. . . . 5
|
| 10 | isunitd.r |
. . . . . 6
| |
| 11 | 10 | elexd 2787 |
. . . . 5
|
| 12 | dvdsrex 13935 |
. . . . . . 7
| |
| 13 | inex1g 4188 |
. . . . . . 7
| |
| 14 | 10, 12, 13 | 3syl 17 |
. . . . . 6
|
| 15 | cnvexg 5229 |
. . . . . 6
| |
| 16 | imaexg 5045 |
. . . . . 6
| |
| 17 | 14, 15, 16 | 3syl 17 |
. . . . 5
|
| 18 | 2, 9, 11, 17 | fvmptd3 5686 |
. . . 4
|
| 19 | 1, 18 | eqtrd 2239 |
. . 3
|
| 20 | 19 | eleq2d 2276 |
. 2
|
| 21 | isunitd.3 |
. . . . . 6
| |
| 22 | isunitd.5 |
. . . . . . 7
| |
| 23 | isunitd.4 |
. . . . . . . 8
| |
| 24 | 23 | fveq2d 5593 |
. . . . . . 7
|
| 25 | 22, 24 | eqtrd 2239 |
. . . . . 6
|
| 26 | 21, 25 | ineq12d 3379 |
. . . . 5
|
| 27 | 26 | cnveqd 4862 |
. . . 4
|
| 28 | isunitd.2 |
. . . . 5
| |
| 29 | 28 | sneqd 3651 |
. . . 4
|
| 30 | 27, 29 | imaeq12d 5032 |
. . 3
|
| 31 | 30 | eleq2d 2276 |
. 2
|
| 32 | reldvdsrsrg 13929 |
. . . . . 6
| |
| 33 | 10, 32 | syl 14 |
. . . . 5
|
| 34 | 21 | releqd 4767 |
. . . . 5
|
| 35 | 33, 34 | mpbird 167 |
. . . 4
|
| 36 | relin1 4801 |
. . . 4
| |
| 37 | eliniseg2 5071 |
. . . 4
| |
| 38 | 35, 36, 37 | 3syl 17 |
. . 3
|
| 39 | brin 4104 |
. . 3
| |
| 40 | 38, 39 | bitrdi 196 |
. 2
|
| 41 | 20, 31, 40 | 3bitr2d 216 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-pre-ltirr 8057 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-ltxr 8132 df-inn 9057 df-2 9115 df-3 9116 df-ndx 12910 df-slot 12911 df-base 12913 df-sets 12914 df-plusg 12997 df-mulr 12998 df-0g 13165 df-mgm 13263 df-sgrp 13309 df-mnd 13324 df-mgp 13758 df-srg 13801 df-dvdsr 13926 df-unit 13927 |
| This theorem is referenced by: 1unit 13944 unitcld 13945 opprunitd 13947 crngunit 13948 unitmulcl 13950 unitgrp 13953 unitnegcl 13967 unitpropdg 13985 elrhmunit 14014 subrguss 14073 subrgunit 14076 |
| Copyright terms: Public domain | W3C validator |