ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isunitd Unicode version

Theorem isunitd 13943
Description: Property of being a unit of a ring. A unit is an element that left- and right-divides one. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 8-Dec-2015.)
Hypotheses
Ref Expression
isunitd.1  |-  ( ph  ->  U  =  (Unit `  R ) )
isunitd.2  |-  ( ph  ->  .1.  =  ( 1r
`  R ) )
isunitd.3  |-  ( ph  -> 
.||  =  ( ||r `  R
) )
isunitd.4  |-  ( ph  ->  S  =  (oppr `  R
) )
isunitd.5  |-  ( ph  ->  E  =  ( ||r `  S
) )
isunitd.r  |-  ( ph  ->  R  e. SRing )
Assertion
Ref Expression
isunitd  |-  ( ph  ->  ( X  e.  U  <->  ( X  .||  .1.  /\  X E  .1.  ) ) )

Proof of Theorem isunitd
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 isunitd.1 . . . 4  |-  ( ph  ->  U  =  (Unit `  R ) )
2 df-unit 13927 . . . . 5  |- Unit  =  ( r  e.  _V  |->  ( `' ( ( ||r `  r
)  i^i  ( ||r `  (oppr `  r
) ) ) " { ( 1r `  r ) } ) )
3 fveq2 5589 . . . . . . . 8  |-  ( r  =  R  ->  ( ||r `  r )  =  (
||r `  R ) )
4 2fveq3 5594 . . . . . . . 8  |-  ( r  =  R  ->  ( ||r `  (oppr
`  r ) )  =  ( ||r `
 (oppr
`  R ) ) )
53, 4ineq12d 3379 . . . . . . 7  |-  ( r  =  R  ->  (
( ||r `
 r )  i^i  ( ||r `
 (oppr
`  r ) ) )  =  ( (
||r `  R )  i^i  ( ||r `  (oppr
`  R ) ) ) )
65cnveqd 4862 . . . . . 6  |-  ( r  =  R  ->  `' ( ( ||r `
 r )  i^i  ( ||r `
 (oppr
`  r ) ) )  =  `' ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) ) )
7 fveq2 5589 . . . . . . 7  |-  ( r  =  R  ->  ( 1r `  r )  =  ( 1r `  R
) )
87sneqd 3651 . . . . . 6  |-  ( r  =  R  ->  { ( 1r `  r ) }  =  { ( 1r `  R ) } )
96, 8imaeq12d 5032 . . . . 5  |-  ( r  =  R  ->  ( `' ( ( ||r `  r
)  i^i  ( ||r `  (oppr `  r
) ) ) " { ( 1r `  r ) } )  =  ( `' ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) ) " { ( 1r `  R ) } ) )
10 isunitd.r . . . . . 6  |-  ( ph  ->  R  e. SRing )
1110elexd 2787 . . . . 5  |-  ( ph  ->  R  e.  _V )
12 dvdsrex 13935 . . . . . . 7  |-  ( R  e. SRing  ->  ( ||r `
 R )  e. 
_V )
13 inex1g 4188 . . . . . . 7  |-  ( (
||r `  R )  e.  _V  ->  ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) )  e.  _V )
1410, 12, 133syl 17 . . . . . 6  |-  ( ph  ->  ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) )  e.  _V )
15 cnvexg 5229 . . . . . 6  |-  ( ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) )  e.  _V  ->  `' ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) )  e.  _V )
16 imaexg 5045 . . . . . 6  |-  ( `' ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) )  e.  _V  ->  ( `' ( ( ||r `  R
)  i^i  ( ||r `  (oppr `  R
) ) ) " { ( 1r `  R ) } )  e.  _V )
1714, 15, 163syl 17 . . . . 5  |-  ( ph  ->  ( `' ( (
||r `  R )  i^i  ( ||r `  (oppr
`  R ) ) ) " { ( 1r `  R ) } )  e.  _V )
182, 9, 11, 17fvmptd3 5686 . . . 4  |-  ( ph  ->  (Unit `  R )  =  ( `' ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) ) " { ( 1r `  R ) } ) )
191, 18eqtrd 2239 . . 3  |-  ( ph  ->  U  =  ( `' ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) ) " { ( 1r `  R ) } ) )
2019eleq2d 2276 . 2  |-  ( ph  ->  ( X  e.  U  <->  X  e.  ( `' ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) ) " { ( 1r `  R ) } ) ) )
21 isunitd.3 . . . . . 6  |-  ( ph  -> 
.||  =  ( ||r `  R
) )
22 isunitd.5 . . . . . . 7  |-  ( ph  ->  E  =  ( ||r `  S
) )
23 isunitd.4 . . . . . . . 8  |-  ( ph  ->  S  =  (oppr `  R
) )
2423fveq2d 5593 . . . . . . 7  |-  ( ph  ->  ( ||r `
 S )  =  ( ||r `
 (oppr
`  R ) ) )
2522, 24eqtrd 2239 . . . . . 6  |-  ( ph  ->  E  =  ( ||r `  (oppr `  R
) ) )
2621, 25ineq12d 3379 . . . . 5  |-  ( ph  ->  (  .||  i^i  E )  =  ( ( ||r `  R
)  i^i  ( ||r `  (oppr `  R
) ) ) )
2726cnveqd 4862 . . . 4  |-  ( ph  ->  `' (  .||  i^i  E
)  =  `' ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) ) )
28 isunitd.2 . . . . 5  |-  ( ph  ->  .1.  =  ( 1r
`  R ) )
2928sneqd 3651 . . . 4  |-  ( ph  ->  {  .1.  }  =  { ( 1r `  R ) } )
3027, 29imaeq12d 5032 . . 3  |-  ( ph  ->  ( `' (  .||  i^i  E ) " {  .1.  } )  =  ( `' ( ( ||r `  R
)  i^i  ( ||r `  (oppr `  R
) ) ) " { ( 1r `  R ) } ) )
3130eleq2d 2276 . 2  |-  ( ph  ->  ( X  e.  ( `' (  .||  i^i  E
) " {  .1.  } )  <->  X  e.  ( `' ( ( ||r `  R
)  i^i  ( ||r `  (oppr `  R
) ) ) " { ( 1r `  R ) } ) ) )
32 reldvdsrsrg 13929 . . . . . 6  |-  ( R  e. SRing  ->  Rel  ( ||r `  R
) )
3310, 32syl 14 . . . . 5  |-  ( ph  ->  Rel  ( ||r `
 R ) )
3421releqd 4767 . . . . 5  |-  ( ph  ->  ( Rel  .||  <->  Rel  ( ||r `  R
) ) )
3533, 34mpbird 167 . . . 4  |-  ( ph  ->  Rel  .||  )
36 relin1 4801 . . . 4  |-  ( Rel  .||  ->  Rel  (  .||  i^i  E
) )
37 eliniseg2 5071 . . . 4  |-  ( Rel  (  .||  i^i  E )  ->  ( X  e.  ( `' (  .||  i^i  E ) " {  .1.  } )  <->  X (  .|| 
i^i  E )  .1.  ) )
3835, 36, 373syl 17 . . 3  |-  ( ph  ->  ( X  e.  ( `' (  .||  i^i  E
) " {  .1.  } )  <->  X (  .||  i^i  E
)  .1.  ) )
39 brin 4104 . . 3  |-  ( X (  .||  i^i  E )  .1.  <->  ( X  .||  .1.  /\  X E  .1.  ) )
4038, 39bitrdi 196 . 2  |-  ( ph  ->  ( X  e.  ( `' (  .||  i^i  E
) " {  .1.  } )  <->  ( X  .||  .1.  /\  X E  .1.  ) ) )
4120, 31, 403bitr2d 216 1  |-  ( ph  ->  ( X  e.  U  <->  ( X  .||  .1.  /\  X E  .1.  ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177   _Vcvv 2773    i^i cin 3169   {csn 3638   class class class wbr 4051   `'ccnv 4682   "cima 4686   Rel wrel 4688   ` cfv 5280   1rcur 13796  SRingcsrg 13800  opprcoppr 13904   ||rcdsr 13923  Unitcui 13924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-pre-ltirr 8057  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-pnf 8129  df-mnf 8130  df-ltxr 8132  df-inn 9057  df-2 9115  df-3 9116  df-ndx 12910  df-slot 12911  df-base 12913  df-sets 12914  df-plusg 12997  df-mulr 12998  df-0g 13165  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-mgp 13758  df-srg 13801  df-dvdsr 13926  df-unit 13927
This theorem is referenced by:  1unit  13944  unitcld  13945  opprunitd  13947  crngunit  13948  unitmulcl  13950  unitgrp  13953  unitnegcl  13967  unitpropdg  13985  elrhmunit  14014  subrguss  14073  subrgunit  14076
  Copyright terms: Public domain W3C validator