ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isunitd Unicode version

Theorem isunitd 13273
Description: Property of being a unit of a ring. A unit is an element that left- and right-divides one. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 8-Dec-2015.)
Hypotheses
Ref Expression
isunitd.1  |-  ( ph  ->  U  =  (Unit `  R ) )
isunitd.2  |-  ( ph  ->  .1.  =  ( 1r
`  R ) )
isunitd.3  |-  ( ph  -> 
.||  =  ( ||r `  R
) )
isunitd.4  |-  ( ph  ->  S  =  (oppr `  R
) )
isunitd.5  |-  ( ph  ->  E  =  ( ||r `  S
) )
isunitd.r  |-  ( ph  ->  R  e. SRing )
Assertion
Ref Expression
isunitd  |-  ( ph  ->  ( X  e.  U  <->  ( X  .||  .1.  /\  X E  .1.  ) ) )

Proof of Theorem isunitd
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 isunitd.1 . . . 4  |-  ( ph  ->  U  =  (Unit `  R ) )
2 df-unit 13257 . . . . 5  |- Unit  =  ( r  e.  _V  |->  ( `' ( ( ||r `  r
)  i^i  ( ||r `  (oppr `  r
) ) ) " { ( 1r `  r ) } ) )
3 fveq2 5515 . . . . . . . 8  |-  ( r  =  R  ->  ( ||r `  r )  =  (
||r `  R ) )
4 2fveq3 5520 . . . . . . . 8  |-  ( r  =  R  ->  ( ||r `  (oppr
`  r ) )  =  ( ||r `
 (oppr
`  R ) ) )
53, 4ineq12d 3337 . . . . . . 7  |-  ( r  =  R  ->  (
( ||r `
 r )  i^i  ( ||r `
 (oppr
`  r ) ) )  =  ( (
||r `  R )  i^i  ( ||r `  (oppr
`  R ) ) ) )
65cnveqd 4803 . . . . . 6  |-  ( r  =  R  ->  `' ( ( ||r `
 r )  i^i  ( ||r `
 (oppr
`  r ) ) )  =  `' ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) ) )
7 fveq2 5515 . . . . . . 7  |-  ( r  =  R  ->  ( 1r `  r )  =  ( 1r `  R
) )
87sneqd 3605 . . . . . 6  |-  ( r  =  R  ->  { ( 1r `  r ) }  =  { ( 1r `  R ) } )
96, 8imaeq12d 4971 . . . . 5  |-  ( r  =  R  ->  ( `' ( ( ||r `  r
)  i^i  ( ||r `  (oppr `  r
) ) ) " { ( 1r `  r ) } )  =  ( `' ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) ) " { ( 1r `  R ) } ) )
10 isunitd.r . . . . . 6  |-  ( ph  ->  R  e. SRing )
1110elexd 2750 . . . . 5  |-  ( ph  ->  R  e.  _V )
12 dvdsrex 13265 . . . . . . 7  |-  ( R  e. SRing  ->  ( ||r `
 R )  e. 
_V )
13 inex1g 4139 . . . . . . 7  |-  ( (
||r `  R )  e.  _V  ->  ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) )  e.  _V )
1410, 12, 133syl 17 . . . . . 6  |-  ( ph  ->  ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) )  e.  _V )
15 cnvexg 5166 . . . . . 6  |-  ( ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) )  e.  _V  ->  `' ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) )  e.  _V )
16 imaexg 4982 . . . . . 6  |-  ( `' ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) )  e.  _V  ->  ( `' ( ( ||r `  R
)  i^i  ( ||r `  (oppr `  R
) ) ) " { ( 1r `  R ) } )  e.  _V )
1714, 15, 163syl 17 . . . . 5  |-  ( ph  ->  ( `' ( (
||r `  R )  i^i  ( ||r `  (oppr
`  R ) ) ) " { ( 1r `  R ) } )  e.  _V )
182, 9, 11, 17fvmptd3 5609 . . . 4  |-  ( ph  ->  (Unit `  R )  =  ( `' ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) ) " { ( 1r `  R ) } ) )
191, 18eqtrd 2210 . . 3  |-  ( ph  ->  U  =  ( `' ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) ) " { ( 1r `  R ) } ) )
2019eleq2d 2247 . 2  |-  ( ph  ->  ( X  e.  U  <->  X  e.  ( `' ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) ) " { ( 1r `  R ) } ) ) )
21 isunitd.3 . . . . . 6  |-  ( ph  -> 
.||  =  ( ||r `  R
) )
22 isunitd.5 . . . . . . 7  |-  ( ph  ->  E  =  ( ||r `  S
) )
23 isunitd.4 . . . . . . . 8  |-  ( ph  ->  S  =  (oppr `  R
) )
2423fveq2d 5519 . . . . . . 7  |-  ( ph  ->  ( ||r `
 S )  =  ( ||r `
 (oppr
`  R ) ) )
2522, 24eqtrd 2210 . . . . . 6  |-  ( ph  ->  E  =  ( ||r `  (oppr `  R
) ) )
2621, 25ineq12d 3337 . . . . 5  |-  ( ph  ->  (  .||  i^i  E )  =  ( ( ||r `  R
)  i^i  ( ||r `  (oppr `  R
) ) ) )
2726cnveqd 4803 . . . 4  |-  ( ph  ->  `' (  .||  i^i  E
)  =  `' ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) ) )
28 isunitd.2 . . . . 5  |-  ( ph  ->  .1.  =  ( 1r
`  R ) )
2928sneqd 3605 . . . 4  |-  ( ph  ->  {  .1.  }  =  { ( 1r `  R ) } )
3027, 29imaeq12d 4971 . . 3  |-  ( ph  ->  ( `' (  .||  i^i  E ) " {  .1.  } )  =  ( `' ( ( ||r `  R
)  i^i  ( ||r `  (oppr `  R
) ) ) " { ( 1r `  R ) } ) )
3130eleq2d 2247 . 2  |-  ( ph  ->  ( X  e.  ( `' (  .||  i^i  E
) " {  .1.  } )  <->  X  e.  ( `' ( ( ||r `  R
)  i^i  ( ||r `  (oppr `  R
) ) ) " { ( 1r `  R ) } ) ) )
32 reldvdsrsrg 13259 . . . . . 6  |-  ( R  e. SRing  ->  Rel  ( ||r `  R
) )
3310, 32syl 14 . . . . 5  |-  ( ph  ->  Rel  ( ||r `
 R ) )
3421releqd 4710 . . . . 5  |-  ( ph  ->  ( Rel  .||  <->  Rel  ( ||r `  R
) ) )
3533, 34mpbird 167 . . . 4  |-  ( ph  ->  Rel  .||  )
36 relin1 4744 . . . 4  |-  ( Rel  .||  ->  Rel  (  .||  i^i  E
) )
37 eliniseg2 5008 . . . 4  |-  ( Rel  (  .||  i^i  E )  ->  ( X  e.  ( `' (  .||  i^i  E ) " {  .1.  } )  <->  X (  .|| 
i^i  E )  .1.  ) )
3835, 36, 373syl 17 . . 3  |-  ( ph  ->  ( X  e.  ( `' (  .||  i^i  E
) " {  .1.  } )  <->  X (  .||  i^i  E
)  .1.  ) )
39 brin 4055 . . 3  |-  ( X (  .||  i^i  E )  .1.  <->  ( X  .||  .1.  /\  X E  .1.  ) )
4038, 39bitrdi 196 . 2  |-  ( ph  ->  ( X  e.  ( `' (  .||  i^i  E
) " {  .1.  } )  <->  ( X  .||  .1.  /\  X E  .1.  ) ) )
4120, 31, 403bitr2d 216 1  |-  ( ph  ->  ( X  e.  U  <->  ( X  .||  .1.  /\  X E  .1.  ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   _Vcvv 2737    i^i cin 3128   {csn 3592   class class class wbr 4003   `'ccnv 4625   "cima 4629   Rel wrel 4631   ` cfv 5216   1rcur 13140  SRingcsrg 13144  opprcoppr 13237   ||rcdsr 13253  Unitcui 13254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-addass 7912  ax-i2m1 7915  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-pre-ltirr 7922  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-pnf 7993  df-mnf 7994  df-ltxr 7996  df-inn 8919  df-2 8977  df-3 8978  df-ndx 12464  df-slot 12465  df-base 12467  df-sets 12468  df-plusg 12548  df-mulr 12549  df-0g 12706  df-mgm 12774  df-sgrp 12807  df-mnd 12817  df-mgp 13129  df-srg 13145  df-dvdsr 13256  df-unit 13257
This theorem is referenced by:  1unit  13274  unitcld  13275  opprunitd  13277  crngunit  13278  unitmulcl  13280  unitgrp  13283  unitnegcl  13297  unitpropdg  13315  subrguss  13355  subrgunit  13358
  Copyright terms: Public domain W3C validator