ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isunitd Unicode version

Theorem isunitd 14064
Description: Property of being a unit of a ring. A unit is an element that left- and right-divides one. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 8-Dec-2015.)
Hypotheses
Ref Expression
isunitd.1  |-  ( ph  ->  U  =  (Unit `  R ) )
isunitd.2  |-  ( ph  ->  .1.  =  ( 1r
`  R ) )
isunitd.3  |-  ( ph  -> 
.||  =  ( ||r `  R
) )
isunitd.4  |-  ( ph  ->  S  =  (oppr `  R
) )
isunitd.5  |-  ( ph  ->  E  =  ( ||r `  S
) )
isunitd.r  |-  ( ph  ->  R  e. SRing )
Assertion
Ref Expression
isunitd  |-  ( ph  ->  ( X  e.  U  <->  ( X  .||  .1.  /\  X E  .1.  ) ) )

Proof of Theorem isunitd
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 isunitd.1 . . . 4  |-  ( ph  ->  U  =  (Unit `  R ) )
2 df-unit 14048 . . . . 5  |- Unit  =  ( r  e.  _V  |->  ( `' ( ( ||r `  r
)  i^i  ( ||r `  (oppr `  r
) ) ) " { ( 1r `  r ) } ) )
3 fveq2 5626 . . . . . . . 8  |-  ( r  =  R  ->  ( ||r `  r )  =  (
||r `  R ) )
4 2fveq3 5631 . . . . . . . 8  |-  ( r  =  R  ->  ( ||r `  (oppr
`  r ) )  =  ( ||r `
 (oppr
`  R ) ) )
53, 4ineq12d 3406 . . . . . . 7  |-  ( r  =  R  ->  (
( ||r `
 r )  i^i  ( ||r `
 (oppr
`  r ) ) )  =  ( (
||r `  R )  i^i  ( ||r `  (oppr
`  R ) ) ) )
65cnveqd 4897 . . . . . 6  |-  ( r  =  R  ->  `' ( ( ||r `
 r )  i^i  ( ||r `
 (oppr
`  r ) ) )  =  `' ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) ) )
7 fveq2 5626 . . . . . . 7  |-  ( r  =  R  ->  ( 1r `  r )  =  ( 1r `  R
) )
87sneqd 3679 . . . . . 6  |-  ( r  =  R  ->  { ( 1r `  r ) }  =  { ( 1r `  R ) } )
96, 8imaeq12d 5068 . . . . 5  |-  ( r  =  R  ->  ( `' ( ( ||r `  r
)  i^i  ( ||r `  (oppr `  r
) ) ) " { ( 1r `  r ) } )  =  ( `' ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) ) " { ( 1r `  R ) } ) )
10 isunitd.r . . . . . 6  |-  ( ph  ->  R  e. SRing )
1110elexd 2813 . . . . 5  |-  ( ph  ->  R  e.  _V )
12 dvdsrex 14056 . . . . . . 7  |-  ( R  e. SRing  ->  ( ||r `
 R )  e. 
_V )
13 inex1g 4219 . . . . . . 7  |-  ( (
||r `  R )  e.  _V  ->  ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) )  e.  _V )
1410, 12, 133syl 17 . . . . . 6  |-  ( ph  ->  ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) )  e.  _V )
15 cnvexg 5265 . . . . . 6  |-  ( ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) )  e.  _V  ->  `' ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) )  e.  _V )
16 imaexg 5081 . . . . . 6  |-  ( `' ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) )  e.  _V  ->  ( `' ( ( ||r `  R
)  i^i  ( ||r `  (oppr `  R
) ) ) " { ( 1r `  R ) } )  e.  _V )
1714, 15, 163syl 17 . . . . 5  |-  ( ph  ->  ( `' ( (
||r `  R )  i^i  ( ||r `  (oppr
`  R ) ) ) " { ( 1r `  R ) } )  e.  _V )
182, 9, 11, 17fvmptd3 5727 . . . 4  |-  ( ph  ->  (Unit `  R )  =  ( `' ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) ) " { ( 1r `  R ) } ) )
191, 18eqtrd 2262 . . 3  |-  ( ph  ->  U  =  ( `' ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) ) " { ( 1r `  R ) } ) )
2019eleq2d 2299 . 2  |-  ( ph  ->  ( X  e.  U  <->  X  e.  ( `' ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) ) " { ( 1r `  R ) } ) ) )
21 isunitd.3 . . . . . 6  |-  ( ph  -> 
.||  =  ( ||r `  R
) )
22 isunitd.5 . . . . . . 7  |-  ( ph  ->  E  =  ( ||r `  S
) )
23 isunitd.4 . . . . . . . 8  |-  ( ph  ->  S  =  (oppr `  R
) )
2423fveq2d 5630 . . . . . . 7  |-  ( ph  ->  ( ||r `
 S )  =  ( ||r `
 (oppr
`  R ) ) )
2522, 24eqtrd 2262 . . . . . 6  |-  ( ph  ->  E  =  ( ||r `  (oppr `  R
) ) )
2621, 25ineq12d 3406 . . . . 5  |-  ( ph  ->  (  .||  i^i  E )  =  ( ( ||r `  R
)  i^i  ( ||r `  (oppr `  R
) ) ) )
2726cnveqd 4897 . . . 4  |-  ( ph  ->  `' (  .||  i^i  E
)  =  `' ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) ) )
28 isunitd.2 . . . . 5  |-  ( ph  ->  .1.  =  ( 1r
`  R ) )
2928sneqd 3679 . . . 4  |-  ( ph  ->  {  .1.  }  =  { ( 1r `  R ) } )
3027, 29imaeq12d 5068 . . 3  |-  ( ph  ->  ( `' (  .||  i^i  E ) " {  .1.  } )  =  ( `' ( ( ||r `  R
)  i^i  ( ||r `  (oppr `  R
) ) ) " { ( 1r `  R ) } ) )
3130eleq2d 2299 . 2  |-  ( ph  ->  ( X  e.  ( `' (  .||  i^i  E
) " {  .1.  } )  <->  X  e.  ( `' ( ( ||r `  R
)  i^i  ( ||r `  (oppr `  R
) ) ) " { ( 1r `  R ) } ) ) )
32 reldvdsrsrg 14050 . . . . . 6  |-  ( R  e. SRing  ->  Rel  ( ||r `  R
) )
3310, 32syl 14 . . . . 5  |-  ( ph  ->  Rel  ( ||r `
 R ) )
3421releqd 4802 . . . . 5  |-  ( ph  ->  ( Rel  .||  <->  Rel  ( ||r `  R
) ) )
3533, 34mpbird 167 . . . 4  |-  ( ph  ->  Rel  .||  )
36 relin1 4836 . . . 4  |-  ( Rel  .||  ->  Rel  (  .||  i^i  E
) )
37 eliniseg2 5107 . . . 4  |-  ( Rel  (  .||  i^i  E )  ->  ( X  e.  ( `' (  .||  i^i  E ) " {  .1.  } )  <->  X (  .|| 
i^i  E )  .1.  ) )
3835, 36, 373syl 17 . . 3  |-  ( ph  ->  ( X  e.  ( `' (  .||  i^i  E
) " {  .1.  } )  <->  X (  .||  i^i  E
)  .1.  ) )
39 brin 4135 . . 3  |-  ( X (  .||  i^i  E )  .1.  <->  ( X  .||  .1.  /\  X E  .1.  ) )
4038, 39bitrdi 196 . 2  |-  ( ph  ->  ( X  e.  ( `' (  .||  i^i  E
) " {  .1.  } )  <->  ( X  .||  .1.  /\  X E  .1.  ) ) )
4120, 31, 403bitr2d 216 1  |-  ( ph  ->  ( X  e.  U  <->  ( X  .||  .1.  /\  X E  .1.  ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   _Vcvv 2799    i^i cin 3196   {csn 3666   class class class wbr 4082   `'ccnv 4717   "cima 4721   Rel wrel 4723   ` cfv 5317   1rcur 13917  SRingcsrg 13921  opprcoppr 14025   ||rcdsr 14044  Unitcui 14045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-mgp 13879  df-srg 13922  df-dvdsr 14047  df-unit 14048
This theorem is referenced by:  1unit  14065  unitcld  14066  opprunitd  14068  crngunit  14069  unitmulcl  14071  unitgrp  14074  unitnegcl  14088  unitpropdg  14106  elrhmunit  14135  subrguss  14194  subrgunit  14197
  Copyright terms: Public domain W3C validator