| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isunitd | Unicode version | ||
| Description: Property of being a unit of a ring. A unit is an element that left- and right-divides one. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 8-Dec-2015.) |
| Ref | Expression |
|---|---|
| isunitd.1 |
|
| isunitd.2 |
|
| isunitd.3 |
|
| isunitd.4 |
|
| isunitd.5 |
|
| isunitd.r |
|
| Ref | Expression |
|---|---|
| isunitd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isunitd.1 |
. . . 4
| |
| 2 | df-unit 13770 |
. . . . 5
| |
| 3 | fveq2 5570 |
. . . . . . . 8
| |
| 4 | 2fveq3 5575 |
. . . . . . . 8
| |
| 5 | 3, 4 | ineq12d 3374 |
. . . . . . 7
|
| 6 | 5 | cnveqd 4852 |
. . . . . 6
|
| 7 | fveq2 5570 |
. . . . . . 7
| |
| 8 | 7 | sneqd 3645 |
. . . . . 6
|
| 9 | 6, 8 | imaeq12d 5020 |
. . . . 5
|
| 10 | isunitd.r |
. . . . . 6
| |
| 11 | 10 | elexd 2784 |
. . . . 5
|
| 12 | dvdsrex 13778 |
. . . . . . 7
| |
| 13 | inex1g 4179 |
. . . . . . 7
| |
| 14 | 10, 12, 13 | 3syl 17 |
. . . . . 6
|
| 15 | cnvexg 5217 |
. . . . . 6
| |
| 16 | imaexg 5033 |
. . . . . 6
| |
| 17 | 14, 15, 16 | 3syl 17 |
. . . . 5
|
| 18 | 2, 9, 11, 17 | fvmptd3 5667 |
. . . 4
|
| 19 | 1, 18 | eqtrd 2237 |
. . 3
|
| 20 | 19 | eleq2d 2274 |
. 2
|
| 21 | isunitd.3 |
. . . . . 6
| |
| 22 | isunitd.5 |
. . . . . . 7
| |
| 23 | isunitd.4 |
. . . . . . . 8
| |
| 24 | 23 | fveq2d 5574 |
. . . . . . 7
|
| 25 | 22, 24 | eqtrd 2237 |
. . . . . 6
|
| 26 | 21, 25 | ineq12d 3374 |
. . . . 5
|
| 27 | 26 | cnveqd 4852 |
. . . 4
|
| 28 | isunitd.2 |
. . . . 5
| |
| 29 | 28 | sneqd 3645 |
. . . 4
|
| 30 | 27, 29 | imaeq12d 5020 |
. . 3
|
| 31 | 30 | eleq2d 2274 |
. 2
|
| 32 | reldvdsrsrg 13772 |
. . . . . 6
| |
| 33 | 10, 32 | syl 14 |
. . . . 5
|
| 34 | 21 | releqd 4757 |
. . . . 5
|
| 35 | 33, 34 | mpbird 167 |
. . . 4
|
| 36 | relin1 4791 |
. . . 4
| |
| 37 | eliniseg2 5059 |
. . . 4
| |
| 38 | 35, 36, 37 | 3syl 17 |
. . 3
|
| 39 | brin 4095 |
. . 3
| |
| 40 | 38, 39 | bitrdi 196 |
. 2
|
| 41 | 20, 31, 40 | 3bitr2d 216 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-i2m1 8012 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-pre-ltirr 8019 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-pnf 8091 df-mnf 8092 df-ltxr 8094 df-inn 9019 df-2 9077 df-3 9078 df-ndx 12754 df-slot 12755 df-base 12757 df-sets 12758 df-plusg 12841 df-mulr 12842 df-0g 13008 df-mgm 13106 df-sgrp 13152 df-mnd 13167 df-mgp 13601 df-srg 13644 df-dvdsr 13769 df-unit 13770 |
| This theorem is referenced by: 1unit 13787 unitcld 13788 opprunitd 13790 crngunit 13791 unitmulcl 13793 unitgrp 13796 unitnegcl 13810 unitpropdg 13828 elrhmunit 13857 subrguss 13916 subrgunit 13919 |
| Copyright terms: Public domain | W3C validator |