ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isunitd Unicode version

Theorem isunitd 13602
Description: Property of being a unit of a ring. A unit is an element that left- and right-divides one. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 8-Dec-2015.)
Hypotheses
Ref Expression
isunitd.1  |-  ( ph  ->  U  =  (Unit `  R ) )
isunitd.2  |-  ( ph  ->  .1.  =  ( 1r
`  R ) )
isunitd.3  |-  ( ph  -> 
.||  =  ( ||r `  R
) )
isunitd.4  |-  ( ph  ->  S  =  (oppr `  R
) )
isunitd.5  |-  ( ph  ->  E  =  ( ||r `  S
) )
isunitd.r  |-  ( ph  ->  R  e. SRing )
Assertion
Ref Expression
isunitd  |-  ( ph  ->  ( X  e.  U  <->  ( X  .||  .1.  /\  X E  .1.  ) ) )

Proof of Theorem isunitd
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 isunitd.1 . . . 4  |-  ( ph  ->  U  =  (Unit `  R ) )
2 df-unit 13586 . . . . 5  |- Unit  =  ( r  e.  _V  |->  ( `' ( ( ||r `  r
)  i^i  ( ||r `  (oppr `  r
) ) ) " { ( 1r `  r ) } ) )
3 fveq2 5554 . . . . . . . 8  |-  ( r  =  R  ->  ( ||r `  r )  =  (
||r `  R ) )
4 2fveq3 5559 . . . . . . . 8  |-  ( r  =  R  ->  ( ||r `  (oppr
`  r ) )  =  ( ||r `
 (oppr
`  R ) ) )
53, 4ineq12d 3361 . . . . . . 7  |-  ( r  =  R  ->  (
( ||r `
 r )  i^i  ( ||r `
 (oppr
`  r ) ) )  =  ( (
||r `  R )  i^i  ( ||r `  (oppr
`  R ) ) ) )
65cnveqd 4838 . . . . . 6  |-  ( r  =  R  ->  `' ( ( ||r `
 r )  i^i  ( ||r `
 (oppr
`  r ) ) )  =  `' ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) ) )
7 fveq2 5554 . . . . . . 7  |-  ( r  =  R  ->  ( 1r `  r )  =  ( 1r `  R
) )
87sneqd 3631 . . . . . 6  |-  ( r  =  R  ->  { ( 1r `  r ) }  =  { ( 1r `  R ) } )
96, 8imaeq12d 5006 . . . . 5  |-  ( r  =  R  ->  ( `' ( ( ||r `  r
)  i^i  ( ||r `  (oppr `  r
) ) ) " { ( 1r `  r ) } )  =  ( `' ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) ) " { ( 1r `  R ) } ) )
10 isunitd.r . . . . . 6  |-  ( ph  ->  R  e. SRing )
1110elexd 2773 . . . . 5  |-  ( ph  ->  R  e.  _V )
12 dvdsrex 13594 . . . . . . 7  |-  ( R  e. SRing  ->  ( ||r `
 R )  e. 
_V )
13 inex1g 4165 . . . . . . 7  |-  ( (
||r `  R )  e.  _V  ->  ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) )  e.  _V )
1410, 12, 133syl 17 . . . . . 6  |-  ( ph  ->  ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) )  e.  _V )
15 cnvexg 5203 . . . . . 6  |-  ( ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) )  e.  _V  ->  `' ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) )  e.  _V )
16 imaexg 5019 . . . . . 6  |-  ( `' ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) )  e.  _V  ->  ( `' ( ( ||r `  R
)  i^i  ( ||r `  (oppr `  R
) ) ) " { ( 1r `  R ) } )  e.  _V )
1714, 15, 163syl 17 . . . . 5  |-  ( ph  ->  ( `' ( (
||r `  R )  i^i  ( ||r `  (oppr
`  R ) ) ) " { ( 1r `  R ) } )  e.  _V )
182, 9, 11, 17fvmptd3 5651 . . . 4  |-  ( ph  ->  (Unit `  R )  =  ( `' ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) ) " { ( 1r `  R ) } ) )
191, 18eqtrd 2226 . . 3  |-  ( ph  ->  U  =  ( `' ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) ) " { ( 1r `  R ) } ) )
2019eleq2d 2263 . 2  |-  ( ph  ->  ( X  e.  U  <->  X  e.  ( `' ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) ) " { ( 1r `  R ) } ) ) )
21 isunitd.3 . . . . . 6  |-  ( ph  -> 
.||  =  ( ||r `  R
) )
22 isunitd.5 . . . . . . 7  |-  ( ph  ->  E  =  ( ||r `  S
) )
23 isunitd.4 . . . . . . . 8  |-  ( ph  ->  S  =  (oppr `  R
) )
2423fveq2d 5558 . . . . . . 7  |-  ( ph  ->  ( ||r `
 S )  =  ( ||r `
 (oppr
`  R ) ) )
2522, 24eqtrd 2226 . . . . . 6  |-  ( ph  ->  E  =  ( ||r `  (oppr `  R
) ) )
2621, 25ineq12d 3361 . . . . 5  |-  ( ph  ->  (  .||  i^i  E )  =  ( ( ||r `  R
)  i^i  ( ||r `  (oppr `  R
) ) ) )
2726cnveqd 4838 . . . 4  |-  ( ph  ->  `' (  .||  i^i  E
)  =  `' ( ( ||r `
 R )  i^i  ( ||r `
 (oppr
`  R ) ) ) )
28 isunitd.2 . . . . 5  |-  ( ph  ->  .1.  =  ( 1r
`  R ) )
2928sneqd 3631 . . . 4  |-  ( ph  ->  {  .1.  }  =  { ( 1r `  R ) } )
3027, 29imaeq12d 5006 . . 3  |-  ( ph  ->  ( `' (  .||  i^i  E ) " {  .1.  } )  =  ( `' ( ( ||r `  R
)  i^i  ( ||r `  (oppr `  R
) ) ) " { ( 1r `  R ) } ) )
3130eleq2d 2263 . 2  |-  ( ph  ->  ( X  e.  ( `' (  .||  i^i  E
) " {  .1.  } )  <->  X  e.  ( `' ( ( ||r `  R
)  i^i  ( ||r `  (oppr `  R
) ) ) " { ( 1r `  R ) } ) ) )
32 reldvdsrsrg 13588 . . . . . 6  |-  ( R  e. SRing  ->  Rel  ( ||r `  R
) )
3310, 32syl 14 . . . . 5  |-  ( ph  ->  Rel  ( ||r `
 R ) )
3421releqd 4743 . . . . 5  |-  ( ph  ->  ( Rel  .||  <->  Rel  ( ||r `  R
) ) )
3533, 34mpbird 167 . . . 4  |-  ( ph  ->  Rel  .||  )
36 relin1 4777 . . . 4  |-  ( Rel  .||  ->  Rel  (  .||  i^i  E
) )
37 eliniseg2 5045 . . . 4  |-  ( Rel  (  .||  i^i  E )  ->  ( X  e.  ( `' (  .||  i^i  E ) " {  .1.  } )  <->  X (  .|| 
i^i  E )  .1.  ) )
3835, 36, 373syl 17 . . 3  |-  ( ph  ->  ( X  e.  ( `' (  .||  i^i  E
) " {  .1.  } )  <->  X (  .||  i^i  E
)  .1.  ) )
39 brin 4081 . . 3  |-  ( X (  .||  i^i  E )  .1.  <->  ( X  .||  .1.  /\  X E  .1.  ) )
4038, 39bitrdi 196 . 2  |-  ( ph  ->  ( X  e.  ( `' (  .||  i^i  E
) " {  .1.  } )  <->  ( X  .||  .1.  /\  X E  .1.  ) ) )
4120, 31, 403bitr2d 216 1  |-  ( ph  ->  ( X  e.  U  <->  ( X  .||  .1.  /\  X E  .1.  ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   _Vcvv 2760    i^i cin 3152   {csn 3618   class class class wbr 4029   `'ccnv 4658   "cima 4662   Rel wrel 4664   ` cfv 5254   1rcur 13455  SRingcsrg 13459  opprcoppr 13563   ||rcdsr 13582  Unitcui 13583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-mgp 13417  df-srg 13460  df-dvdsr 13585  df-unit 13586
This theorem is referenced by:  1unit  13603  unitcld  13604  opprunitd  13606  crngunit  13607  unitmulcl  13609  unitgrp  13612  unitnegcl  13626  unitpropdg  13644  elrhmunit  13673  subrguss  13732  subrgunit  13735
  Copyright terms: Public domain W3C validator