| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > iotauni | GIF version | ||
| Description: Equivalence between two different forms of ℩. (Contributed by Andrew Salmon, 12-Jul-2011.) | 
| Ref | Expression | 
|---|---|
| iotauni | ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-eu 2048 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
| 2 | iotaval 5230 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (℩𝑥𝜑) = 𝑧) | |
| 3 | uniabio 5229 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∪ {𝑥 ∣ 𝜑} = 𝑧) | |
| 4 | 2, 3 | eqtr4d 2232 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) | 
| 5 | 4 | exlimiv 1612 | . 2 ⊢ (∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) | 
| 6 | 1, 5 | sylbi 121 | 1 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 = wceq 1364 ∃wex 1506 ∃!weu 2045 {cab 2182 ∪ cuni 3839 ℩cio 5217 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-sn 3628 df-pr 3629 df-uni 3840 df-iota 5219 | 
| This theorem is referenced by: iotaint 5232 fveu 5550 riotauni 5884 | 
| Copyright terms: Public domain | W3C validator |