ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotauni GIF version

Theorem iotauni 5056
Description: Equivalence between two different forms of . (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
iotauni (∃!𝑥𝜑 → (℩𝑥𝜑) = {𝑥𝜑})

Proof of Theorem iotauni
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-eu 1976 . 2 (∃!𝑥𝜑 ↔ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
2 iotaval 5055 . . . 4 (∀𝑥(𝜑𝑥 = 𝑧) → (℩𝑥𝜑) = 𝑧)
3 uniabio 5054 . . . 4 (∀𝑥(𝜑𝑥 = 𝑧) → {𝑥𝜑} = 𝑧)
42, 3eqtr4d 2148 . . 3 (∀𝑥(𝜑𝑥 = 𝑧) → (℩𝑥𝜑) = {𝑥𝜑})
54exlimiv 1558 . 2 (∃𝑧𝑥(𝜑𝑥 = 𝑧) → (℩𝑥𝜑) = {𝑥𝜑})
61, 5sylbi 120 1 (∃!𝑥𝜑 → (℩𝑥𝜑) = {𝑥𝜑})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1310   = wceq 1312  wex 1449  ∃!weu 1973  {cab 2099   cuni 3700  cio 5042
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095
This theorem depends on definitions:  df-bi 116  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-rex 2394  df-v 2657  df-sbc 2877  df-un 3039  df-sn 3497  df-pr 3498  df-uni 3701  df-iota 5044
This theorem is referenced by:  iotaint  5057  fveu  5365  riotauni  5688
  Copyright terms: Public domain W3C validator