ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotauni GIF version

Theorem iotauni 5100
Description: Equivalence between two different forms of . (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
iotauni (∃!𝑥𝜑 → (℩𝑥𝜑) = {𝑥𝜑})

Proof of Theorem iotauni
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-eu 2002 . 2 (∃!𝑥𝜑 ↔ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
2 iotaval 5099 . . . 4 (∀𝑥(𝜑𝑥 = 𝑧) → (℩𝑥𝜑) = 𝑧)
3 uniabio 5098 . . . 4 (∀𝑥(𝜑𝑥 = 𝑧) → {𝑥𝜑} = 𝑧)
42, 3eqtr4d 2175 . . 3 (∀𝑥(𝜑𝑥 = 𝑧) → (℩𝑥𝜑) = {𝑥𝜑})
54exlimiv 1577 . 2 (∃𝑧𝑥(𝜑𝑥 = 𝑧) → (℩𝑥𝜑) = {𝑥𝜑})
61, 5sylbi 120 1 (∃!𝑥𝜑 → (℩𝑥𝜑) = {𝑥𝜑})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1329   = wceq 1331  wex 1468  ∃!weu 1999  {cab 2125   cuni 3736  cio 5086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-rex 2422  df-v 2688  df-sbc 2910  df-un 3075  df-sn 3533  df-pr 3534  df-uni 3737  df-iota 5088
This theorem is referenced by:  iotaint  5101  fveu  5413  riotauni  5736
  Copyright terms: Public domain W3C validator