ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniabio Unicode version

Theorem uniabio 5225
Description: Part of Theorem 8.17 in [Quine] p. 56. This theorem serves as a lemma for the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
uniabio  |-  ( A. x ( ph  <->  x  =  y )  ->  U. {
x  |  ph }  =  y )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem uniabio
StepHypRef Expression
1 abbi 2307 . . . . 5  |-  ( A. x ( ph  <->  x  =  y )  <->  { x  |  ph }  =  {
x  |  x  =  y } )
21biimpi 120 . . . 4  |-  ( A. x ( ph  <->  x  =  y )  ->  { x  |  ph }  =  {
x  |  x  =  y } )
3 df-sn 3624 . . . 4  |-  { y }  =  { x  |  x  =  y }
42, 3eqtr4di 2244 . . 3  |-  ( A. x ( ph  <->  x  =  y )  ->  { x  |  ph }  =  {
y } )
54unieqd 3846 . 2  |-  ( A. x ( ph  <->  x  =  y )  ->  U. {
x  |  ph }  =  U. { y } )
6 vex 2763 . . 3  |-  y  e. 
_V
76unisn 3851 . 2  |-  U. {
y }  =  y
85, 7eqtrdi 2242 1  |-  ( A. x ( ph  <->  x  =  y )  ->  U. {
x  |  ph }  =  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1362    = wceq 1364   {cab 2179   {csn 3618   U.cuni 3835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-uni 3836
This theorem is referenced by:  iotaval  5226  iotauni  5227
  Copyright terms: Public domain W3C validator