Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uniabio | Unicode version |
Description: Part of Theorem 8.17 in [Quine] p. 56. This theorem serves as a lemma for the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
uniabio |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi 2280 | . . . . 5 | |
2 | 1 | biimpi 119 | . . . 4 |
3 | df-sn 3582 | . . . 4 | |
4 | 2, 3 | eqtr4di 2217 | . . 3 |
5 | 4 | unieqd 3800 | . 2 |
6 | vex 2729 | . . 3 | |
7 | 6 | unisn 3805 | . 2 |
8 | 5, 7 | eqtrdi 2215 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1341 wceq 1343 cab 2151 csn 3576 cuni 3789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-uni 3790 |
This theorem is referenced by: iotaval 5164 iotauni 5165 |
Copyright terms: Public domain | W3C validator |