| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uniabio | Unicode version | ||
| Description: Part of Theorem 8.17 in [Quine] p. 56. This theorem serves as a lemma for the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.) |
| Ref | Expression |
|---|---|
| uniabio |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abbi 2321 |
. . . . 5
| |
| 2 | 1 | biimpi 120 |
. . . 4
|
| 3 | df-sn 3649 |
. . . 4
| |
| 4 | 2, 3 | eqtr4di 2258 |
. . 3
|
| 5 | 4 | unieqd 3875 |
. 2
|
| 6 | vex 2779 |
. . 3
| |
| 7 | 6 | unisn 3880 |
. 2
|
| 8 | 5, 7 | eqtrdi 2256 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-uni 3865 |
| This theorem is referenced by: iotaval 5262 iotauni 5263 |
| Copyright terms: Public domain | W3C validator |