Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uniabio | Unicode version |
Description: Part of Theorem 8.17 in [Quine] p. 56. This theorem serves as a lemma for the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
uniabio |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi 2284 | . . . . 5 | |
2 | 1 | biimpi 119 | . . . 4 |
3 | df-sn 3589 | . . . 4 | |
4 | 2, 3 | eqtr4di 2221 | . . 3 |
5 | 4 | unieqd 3807 | . 2 |
6 | vex 2733 | . . 3 | |
7 | 6 | unisn 3812 | . 2 |
8 | 5, 7 | eqtrdi 2219 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1346 wceq 1348 cab 2156 csn 3583 cuni 3796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-uni 3797 |
This theorem is referenced by: iotaval 5171 iotauni 5172 |
Copyright terms: Public domain | W3C validator |