Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uniabio | Unicode version |
Description: Part of Theorem 8.17 in [Quine] p. 56. This theorem serves as a lemma for the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
uniabio |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi 2289 | . . . . 5 | |
2 | 1 | biimpi 120 | . . . 4 |
3 | df-sn 3595 | . . . 4 | |
4 | 2, 3 | eqtr4di 2226 | . . 3 |
5 | 4 | unieqd 3816 | . 2 |
6 | vex 2738 | . . 3 | |
7 | 6 | unisn 3821 | . 2 |
8 | 5, 7 | eqtrdi 2224 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 wal 1351 wceq 1353 cab 2161 csn 3589 cuni 3805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-v 2737 df-un 3131 df-sn 3595 df-pr 3596 df-uni 3806 |
This theorem is referenced by: iotaval 5181 iotauni 5182 |
Copyright terms: Public domain | W3C validator |