Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rdg0 | Unicode version |
Description: The initial value of the recursive definition generator. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.) |
Ref | Expression |
---|---|
rdg.1 |
Ref | Expression |
---|---|
rdg0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4109 | . . . . 5 | |
2 | dmeq 4804 | . . . . . . . 8 | |
3 | fveq1 5485 | . . . . . . . . 9 | |
4 | 3 | fveq2d 5490 | . . . . . . . 8 |
5 | 2, 4 | iuneq12d 3890 | . . . . . . 7 |
6 | 5 | uneq2d 3276 | . . . . . 6 |
7 | eqid 2165 | . . . . . 6 | |
8 | rdg.1 | . . . . . . 7 | |
9 | dm0 4818 | . . . . . . . . . 10 | |
10 | iuneq1 3879 | . . . . . . . . . 10 | |
11 | 9, 10 | ax-mp 5 | . . . . . . . . 9 |
12 | 0iun 3923 | . . . . . . . . 9 | |
13 | 11, 12 | eqtri 2186 | . . . . . . . 8 |
14 | 13, 1 | eqeltri 2239 | . . . . . . 7 |
15 | 8, 14 | unex 4419 | . . . . . 6 |
16 | 6, 7, 15 | fvmpt 5563 | . . . . 5 |
17 | 1, 16 | ax-mp 5 | . . . 4 |
18 | 17, 15 | eqeltri 2239 | . . 3 |
19 | df-irdg 6338 | . . . 4 recs | |
20 | 19 | tfr0 6291 | . . 3 |
21 | 18, 20 | ax-mp 5 | . 2 |
22 | 13 | uneq2i 3273 | . . . 4 |
23 | 17, 22 | eqtri 2186 | . . 3 |
24 | un0 3442 | . . 3 | |
25 | 23, 24 | eqtri 2186 | . 2 |
26 | 21, 25 | eqtri 2186 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 wcel 2136 cvv 2726 cun 3114 c0 3409 ciun 3866 cmpt 4043 cdm 4604 cfv 5188 crdg 6337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-recs 6273 df-irdg 6338 |
This theorem is referenced by: rdg0g 6356 om0 6426 |
Copyright terms: Public domain | W3C validator |