| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rdg0 | Unicode version | ||
| Description: The initial value of the recursive definition generator. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.) | 
| Ref | Expression | 
|---|---|
| rdg.1 | 
 | 
| Ref | Expression | 
|---|---|
| rdg0 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0ex 4160 | 
. . . . 5
 | |
| 2 | dmeq 4866 | 
. . . . . . . 8
 | |
| 3 | fveq1 5557 | 
. . . . . . . . 9
 | |
| 4 | 3 | fveq2d 5562 | 
. . . . . . . 8
 | 
| 5 | 2, 4 | iuneq12d 3940 | 
. . . . . . 7
 | 
| 6 | 5 | uneq2d 3317 | 
. . . . . 6
 | 
| 7 | eqid 2196 | 
. . . . . 6
 | |
| 8 | rdg.1 | 
. . . . . . 7
 | |
| 9 | dm0 4880 | 
. . . . . . . . . 10
 | |
| 10 | iuneq1 3929 | 
. . . . . . . . . 10
 | |
| 11 | 9, 10 | ax-mp 5 | 
. . . . . . . . 9
 | 
| 12 | 0iun 3974 | 
. . . . . . . . 9
 | |
| 13 | 11, 12 | eqtri 2217 | 
. . . . . . . 8
 | 
| 14 | 13, 1 | eqeltri 2269 | 
. . . . . . 7
 | 
| 15 | 8, 14 | unex 4476 | 
. . . . . 6
 | 
| 16 | 6, 7, 15 | fvmpt 5638 | 
. . . . 5
 | 
| 17 | 1, 16 | ax-mp 5 | 
. . . 4
 | 
| 18 | 17, 15 | eqeltri 2269 | 
. . 3
 | 
| 19 | df-irdg 6428 | 
. . . 4
 | |
| 20 | 19 | tfr0 6381 | 
. . 3
 | 
| 21 | 18, 20 | ax-mp 5 | 
. 2
 | 
| 22 | 13 | uneq2i 3314 | 
. . . 4
 | 
| 23 | 17, 22 | eqtri 2217 | 
. . 3
 | 
| 24 | un0 3484 | 
. . 3
 | |
| 25 | 23, 24 | eqtri 2217 | 
. 2
 | 
| 26 | 21, 25 | eqtri 2217 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-recs 6363 df-irdg 6428 | 
| This theorem is referenced by: rdg0g 6446 om0 6516 | 
| Copyright terms: Public domain | W3C validator |