ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdg0 Unicode version

Theorem rdg0 6355
Description: The initial value of the recursive definition generator. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
Hypothesis
Ref Expression
rdg.1  |-  A  e. 
_V
Assertion
Ref Expression
rdg0  |-  ( rec ( F ,  A
) `  (/) )  =  A

Proof of Theorem rdg0
Dummy variables  x  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4109 . . . . 5  |-  (/)  e.  _V
2 dmeq 4804 . . . . . . . 8  |-  ( g  =  (/)  ->  dom  g  =  dom  (/) )
3 fveq1 5485 . . . . . . . . 9  |-  ( g  =  (/)  ->  ( g `
 x )  =  ( (/) `  x ) )
43fveq2d 5490 . . . . . . . 8  |-  ( g  =  (/)  ->  ( F `
 ( g `  x ) )  =  ( F `  ( (/) `  x ) ) )
52, 4iuneq12d 3890 . . . . . . 7  |-  ( g  =  (/)  ->  U_ x  e.  dom  g ( F `
 ( g `  x ) )  = 
U_ x  e.  dom  (/) ( F `  ( (/) `  x ) ) )
65uneq2d 3276 . . . . . 6  |-  ( g  =  (/)  ->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) )  =  ( A  u.  U_ x  e.  dom  (/) ( F `
 ( (/) `  x
) ) ) )
7 eqid 2165 . . . . . 6  |-  ( g  e.  _V  |->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) ) )  =  ( g  e.  _V  |->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) ) )
8 rdg.1 . . . . . . 7  |-  A  e. 
_V
9 dm0 4818 . . . . . . . . . 10  |-  dom  (/)  =  (/)
10 iuneq1 3879 . . . . . . . . . 10  |-  ( dom  (/)  =  (/)  ->  U_ x  e.  dom  (/) ( F `  ( (/) `  x ) )  =  U_ x  e.  (/)  ( F `  ( (/) `  x ) ) )
119, 10ax-mp 5 . . . . . . . . 9  |-  U_ x  e.  dom  (/) ( F `  ( (/) `  x ) )  =  U_ x  e.  (/)  ( F `  ( (/) `  x ) )
12 0iun 3923 . . . . . . . . 9  |-  U_ x  e.  (/)  ( F `  ( (/) `  x ) )  =  (/)
1311, 12eqtri 2186 . . . . . . . 8  |-  U_ x  e.  dom  (/) ( F `  ( (/) `  x ) )  =  (/)
1413, 1eqeltri 2239 . . . . . . 7  |-  U_ x  e.  dom  (/) ( F `  ( (/) `  x ) )  e.  _V
158, 14unex 4419 . . . . . 6  |-  ( A  u.  U_ x  e. 
dom  (/) ( F `  ( (/) `  x ) ) )  e.  _V
166, 7, 15fvmpt 5563 . . . . 5  |-  ( (/)  e.  _V  ->  ( (
g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  (/) )  =  ( A  u.  U_ x  e.  dom  (/) ( F `
 ( (/) `  x
) ) ) )
171, 16ax-mp 5 . . . 4  |-  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  (/) )  =  ( A  u.  U_ x  e.  dom  (/) ( F `
 ( (/) `  x
) ) )
1817, 15eqeltri 2239 . . 3  |-  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  (/) )  e. 
_V
19 df-irdg 6338 . . . 4  |-  rec ( F ,  A )  = recs ( ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) )
2019tfr0 6291 . . 3  |-  ( ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  (/) )  e. 
_V  ->  ( rec ( F ,  A ) `  (/) )  =  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  (/) ) )
2118, 20ax-mp 5 . 2  |-  ( rec ( F ,  A
) `  (/) )  =  ( ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) `  (/) )
2213uneq2i 3273 . . . 4  |-  ( A  u.  U_ x  e. 
dom  (/) ( F `  ( (/) `  x ) ) )  =  ( A  u.  (/) )
2317, 22eqtri 2186 . . 3  |-  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  (/) )  =  ( A  u.  (/) )
24 un0 3442 . . 3  |-  ( A  u.  (/) )  =  A
2523, 24eqtri 2186 . 2  |-  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  (/) )  =  A
2621, 25eqtri 2186 1  |-  ( rec ( F ,  A
) `  (/) )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1343    e. wcel 2136   _Vcvv 2726    u. cun 3114   (/)c0 3409   U_ciun 3866    |-> cmpt 4043   dom cdm 4604   ` cfv 5188   reccrdg 6337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196  df-recs 6273  df-irdg 6338
This theorem is referenced by:  rdg0g  6356  om0  6426
  Copyright terms: Public domain W3C validator