ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdg0 Unicode version

Theorem rdg0 6402
Description: The initial value of the recursive definition generator. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
Hypothesis
Ref Expression
rdg.1  |-  A  e. 
_V
Assertion
Ref Expression
rdg0  |-  ( rec ( F ,  A
) `  (/) )  =  A

Proof of Theorem rdg0
Dummy variables  x  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4142 . . . . 5  |-  (/)  e.  _V
2 dmeq 4839 . . . . . . . 8  |-  ( g  =  (/)  ->  dom  g  =  dom  (/) )
3 fveq1 5526 . . . . . . . . 9  |-  ( g  =  (/)  ->  ( g `
 x )  =  ( (/) `  x ) )
43fveq2d 5531 . . . . . . . 8  |-  ( g  =  (/)  ->  ( F `
 ( g `  x ) )  =  ( F `  ( (/) `  x ) ) )
52, 4iuneq12d 3922 . . . . . . 7  |-  ( g  =  (/)  ->  U_ x  e.  dom  g ( F `
 ( g `  x ) )  = 
U_ x  e.  dom  (/) ( F `  ( (/) `  x ) ) )
65uneq2d 3301 . . . . . 6  |-  ( g  =  (/)  ->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) )  =  ( A  u.  U_ x  e.  dom  (/) ( F `
 ( (/) `  x
) ) ) )
7 eqid 2187 . . . . . 6  |-  ( g  e.  _V  |->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) ) )  =  ( g  e.  _V  |->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) ) )
8 rdg.1 . . . . . . 7  |-  A  e. 
_V
9 dm0 4853 . . . . . . . . . 10  |-  dom  (/)  =  (/)
10 iuneq1 3911 . . . . . . . . . 10  |-  ( dom  (/)  =  (/)  ->  U_ x  e.  dom  (/) ( F `  ( (/) `  x ) )  =  U_ x  e.  (/)  ( F `  ( (/) `  x ) ) )
119, 10ax-mp 5 . . . . . . . . 9  |-  U_ x  e.  dom  (/) ( F `  ( (/) `  x ) )  =  U_ x  e.  (/)  ( F `  ( (/) `  x ) )
12 0iun 3956 . . . . . . . . 9  |-  U_ x  e.  (/)  ( F `  ( (/) `  x ) )  =  (/)
1311, 12eqtri 2208 . . . . . . . 8  |-  U_ x  e.  dom  (/) ( F `  ( (/) `  x ) )  =  (/)
1413, 1eqeltri 2260 . . . . . . 7  |-  U_ x  e.  dom  (/) ( F `  ( (/) `  x ) )  e.  _V
158, 14unex 4453 . . . . . 6  |-  ( A  u.  U_ x  e. 
dom  (/) ( F `  ( (/) `  x ) ) )  e.  _V
166, 7, 15fvmpt 5606 . . . . 5  |-  ( (/)  e.  _V  ->  ( (
g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  (/) )  =  ( A  u.  U_ x  e.  dom  (/) ( F `
 ( (/) `  x
) ) ) )
171, 16ax-mp 5 . . . 4  |-  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  (/) )  =  ( A  u.  U_ x  e.  dom  (/) ( F `
 ( (/) `  x
) ) )
1817, 15eqeltri 2260 . . 3  |-  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  (/) )  e. 
_V
19 df-irdg 6385 . . . 4  |-  rec ( F ,  A )  = recs ( ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) )
2019tfr0 6338 . . 3  |-  ( ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  (/) )  e. 
_V  ->  ( rec ( F ,  A ) `  (/) )  =  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  (/) ) )
2118, 20ax-mp 5 . 2  |-  ( rec ( F ,  A
) `  (/) )  =  ( ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) `  (/) )
2213uneq2i 3298 . . . 4  |-  ( A  u.  U_ x  e. 
dom  (/) ( F `  ( (/) `  x ) ) )  =  ( A  u.  (/) )
2317, 22eqtri 2208 . . 3  |-  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  (/) )  =  ( A  u.  (/) )
24 un0 3468 . . 3  |-  ( A  u.  (/) )  =  A
2523, 24eqtri 2208 . 2  |-  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  (/) )  =  A
2621, 25eqtri 2208 1  |-  ( rec ( F ,  A
) `  (/) )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1363    e. wcel 2158   _Vcvv 2749    u. cun 3139   (/)c0 3434   U_ciun 3898    |-> cmpt 4076   dom cdm 4638   ` cfv 5228   reccrdg 6384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-iord 4378  df-on 4380  df-suc 4383  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-res 4650  df-iota 5190  df-fun 5230  df-fn 5231  df-fv 5236  df-recs 6320  df-irdg 6385
This theorem is referenced by:  rdg0g  6403  om0  6473
  Copyright terms: Public domain W3C validator