| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rdg0 | Unicode version | ||
| Description: The initial value of the recursive definition generator. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.) |
| Ref | Expression |
|---|---|
| rdg.1 |
|
| Ref | Expression |
|---|---|
| rdg0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4161 |
. . . . 5
| |
| 2 | dmeq 4867 |
. . . . . . . 8
| |
| 3 | fveq1 5560 |
. . . . . . . . 9
| |
| 4 | 3 | fveq2d 5565 |
. . . . . . . 8
|
| 5 | 2, 4 | iuneq12d 3941 |
. . . . . . 7
|
| 6 | 5 | uneq2d 3318 |
. . . . . 6
|
| 7 | eqid 2196 |
. . . . . 6
| |
| 8 | rdg.1 |
. . . . . . 7
| |
| 9 | dm0 4881 |
. . . . . . . . . 10
| |
| 10 | iuneq1 3930 |
. . . . . . . . . 10
| |
| 11 | 9, 10 | ax-mp 5 |
. . . . . . . . 9
|
| 12 | 0iun 3975 |
. . . . . . . . 9
| |
| 13 | 11, 12 | eqtri 2217 |
. . . . . . . 8
|
| 14 | 13, 1 | eqeltri 2269 |
. . . . . . 7
|
| 15 | 8, 14 | unex 4477 |
. . . . . 6
|
| 16 | 6, 7, 15 | fvmpt 5641 |
. . . . 5
|
| 17 | 1, 16 | ax-mp 5 |
. . . 4
|
| 18 | 17, 15 | eqeltri 2269 |
. . 3
|
| 19 | df-irdg 6437 |
. . . 4
| |
| 20 | 19 | tfr0 6390 |
. . 3
|
| 21 | 18, 20 | ax-mp 5 |
. 2
|
| 22 | 13 | uneq2i 3315 |
. . . 4
|
| 23 | 17, 22 | eqtri 2217 |
. . 3
|
| 24 | un0 3485 |
. . 3
| |
| 25 | 23, 24 | eqtri 2217 |
. 2
|
| 26 | 21, 25 | eqtri 2217 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-recs 6372 df-irdg 6437 |
| This theorem is referenced by: rdg0g 6455 om0 6525 |
| Copyright terms: Public domain | W3C validator |