| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rdg0 | Unicode version | ||
| Description: The initial value of the recursive definition generator. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.) |
| Ref | Expression |
|---|---|
| rdg.1 |
|
| Ref | Expression |
|---|---|
| rdg0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4175 |
. . . . 5
| |
| 2 | dmeq 4883 |
. . . . . . . 8
| |
| 3 | fveq1 5582 |
. . . . . . . . 9
| |
| 4 | 3 | fveq2d 5587 |
. . . . . . . 8
|
| 5 | 2, 4 | iuneq12d 3953 |
. . . . . . 7
|
| 6 | 5 | uneq2d 3328 |
. . . . . 6
|
| 7 | eqid 2206 |
. . . . . 6
| |
| 8 | rdg.1 |
. . . . . . 7
| |
| 9 | dm0 4897 |
. . . . . . . . . 10
| |
| 10 | iuneq1 3942 |
. . . . . . . . . 10
| |
| 11 | 9, 10 | ax-mp 5 |
. . . . . . . . 9
|
| 12 | 0iun 3987 |
. . . . . . . . 9
| |
| 13 | 11, 12 | eqtri 2227 |
. . . . . . . 8
|
| 14 | 13, 1 | eqeltri 2279 |
. . . . . . 7
|
| 15 | 8, 14 | unex 4492 |
. . . . . 6
|
| 16 | 6, 7, 15 | fvmpt 5663 |
. . . . 5
|
| 17 | 1, 16 | ax-mp 5 |
. . . 4
|
| 18 | 17, 15 | eqeltri 2279 |
. . 3
|
| 19 | df-irdg 6463 |
. . . 4
| |
| 20 | 19 | tfr0 6416 |
. . 3
|
| 21 | 18, 20 | ax-mp 5 |
. 2
|
| 22 | 13 | uneq2i 3325 |
. . . 4
|
| 23 | 17, 22 | eqtri 2227 |
. . 3
|
| 24 | un0 3495 |
. . 3
| |
| 25 | 23, 24 | eqtri 2227 |
. 2
|
| 26 | 21, 25 | eqtri 2227 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-iord 4417 df-on 4419 df-suc 4422 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-res 4691 df-iota 5237 df-fun 5278 df-fn 5279 df-fv 5284 df-recs 6398 df-irdg 6463 |
| This theorem is referenced by: rdg0g 6481 om0 6551 |
| Copyright terms: Public domain | W3C validator |