ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdg0 Unicode version

Theorem rdg0 6480
Description: The initial value of the recursive definition generator. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
Hypothesis
Ref Expression
rdg.1  |-  A  e. 
_V
Assertion
Ref Expression
rdg0  |-  ( rec ( F ,  A
) `  (/) )  =  A

Proof of Theorem rdg0
Dummy variables  x  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4175 . . . . 5  |-  (/)  e.  _V
2 dmeq 4883 . . . . . . . 8  |-  ( g  =  (/)  ->  dom  g  =  dom  (/) )
3 fveq1 5582 . . . . . . . . 9  |-  ( g  =  (/)  ->  ( g `
 x )  =  ( (/) `  x ) )
43fveq2d 5587 . . . . . . . 8  |-  ( g  =  (/)  ->  ( F `
 ( g `  x ) )  =  ( F `  ( (/) `  x ) ) )
52, 4iuneq12d 3953 . . . . . . 7  |-  ( g  =  (/)  ->  U_ x  e.  dom  g ( F `
 ( g `  x ) )  = 
U_ x  e.  dom  (/) ( F `  ( (/) `  x ) ) )
65uneq2d 3328 . . . . . 6  |-  ( g  =  (/)  ->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) )  =  ( A  u.  U_ x  e.  dom  (/) ( F `
 ( (/) `  x
) ) ) )
7 eqid 2206 . . . . . 6  |-  ( g  e.  _V  |->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) ) )  =  ( g  e.  _V  |->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) ) )
8 rdg.1 . . . . . . 7  |-  A  e. 
_V
9 dm0 4897 . . . . . . . . . 10  |-  dom  (/)  =  (/)
10 iuneq1 3942 . . . . . . . . . 10  |-  ( dom  (/)  =  (/)  ->  U_ x  e.  dom  (/) ( F `  ( (/) `  x ) )  =  U_ x  e.  (/)  ( F `  ( (/) `  x ) ) )
119, 10ax-mp 5 . . . . . . . . 9  |-  U_ x  e.  dom  (/) ( F `  ( (/) `  x ) )  =  U_ x  e.  (/)  ( F `  ( (/) `  x ) )
12 0iun 3987 . . . . . . . . 9  |-  U_ x  e.  (/)  ( F `  ( (/) `  x ) )  =  (/)
1311, 12eqtri 2227 . . . . . . . 8  |-  U_ x  e.  dom  (/) ( F `  ( (/) `  x ) )  =  (/)
1413, 1eqeltri 2279 . . . . . . 7  |-  U_ x  e.  dom  (/) ( F `  ( (/) `  x ) )  e.  _V
158, 14unex 4492 . . . . . 6  |-  ( A  u.  U_ x  e. 
dom  (/) ( F `  ( (/) `  x ) ) )  e.  _V
166, 7, 15fvmpt 5663 . . . . 5  |-  ( (/)  e.  _V  ->  ( (
g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  (/) )  =  ( A  u.  U_ x  e.  dom  (/) ( F `
 ( (/) `  x
) ) ) )
171, 16ax-mp 5 . . . 4  |-  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  (/) )  =  ( A  u.  U_ x  e.  dom  (/) ( F `
 ( (/) `  x
) ) )
1817, 15eqeltri 2279 . . 3  |-  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  (/) )  e. 
_V
19 df-irdg 6463 . . . 4  |-  rec ( F ,  A )  = recs ( ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) )
2019tfr0 6416 . . 3  |-  ( ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  (/) )  e. 
_V  ->  ( rec ( F ,  A ) `  (/) )  =  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  (/) ) )
2118, 20ax-mp 5 . 2  |-  ( rec ( F ,  A
) `  (/) )  =  ( ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) `  (/) )
2213uneq2i 3325 . . . 4  |-  ( A  u.  U_ x  e. 
dom  (/) ( F `  ( (/) `  x ) ) )  =  ( A  u.  (/) )
2317, 22eqtri 2227 . . 3  |-  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  (/) )  =  ( A  u.  (/) )
24 un0 3495 . . 3  |-  ( A  u.  (/) )  =  A
2523, 24eqtri 2227 . 2  |-  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  (/) )  =  A
2621, 25eqtri 2227 1  |-  ( rec ( F ,  A
) `  (/) )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2177   _Vcvv 2773    u. cun 3165   (/)c0 3461   U_ciun 3929    |-> cmpt 4109   dom cdm 4679   ` cfv 5276   reccrdg 6462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-suc 4422  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-res 4691  df-iota 5237  df-fun 5278  df-fn 5279  df-fv 5284  df-recs 6398  df-irdg 6463
This theorem is referenced by:  rdg0g  6481  om0  6551
  Copyright terms: Public domain W3C validator