ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgivallem Unicode version

Theorem rdgivallem 6128
Description: Value of the recursive definition generator. Lemma for rdgival 6129 which simplifies the value further. (Contributed by Jim Kingdon, 13-Jul-2019.) (New usage is discouraged.)
Assertion
Ref Expression
rdgivallem  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  A ) `  B )  =  ( A  u.  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `  x
) ) ) )
Distinct variable groups:    x, A    x, B    x, F    x, V

Proof of Theorem rdgivallem
Dummy variables  g  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-irdg 6117 . . . 4  |-  rec ( F ,  A )  = recs ( ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) )
2 rdgruledefgg 6122 . . . . 5  |-  ( ( F  Fn  _V  /\  A  e.  V )  ->  ( Fun  ( g  e.  _V  |->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) ) )  /\  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  y )  e.  _V ) )
32alrimiv 1802 . . . 4  |-  ( ( F  Fn  _V  /\  A  e.  V )  ->  A. y ( Fun  ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )  /\  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  y )  e.  _V ) )
41, 3tfri2d 6083 . . 3  |-  ( ( ( F  Fn  _V  /\  A  e.  V )  /\  B  e.  On )  ->  ( rec ( F ,  A ) `  B )  =  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  ( rec ( F ,  A
)  |`  B ) ) )
543impa 1138 . 2  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  A ) `  B )  =  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  ( rec ( F ,  A
)  |`  B ) ) )
6 eqidd 2089 . . 3  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )  =  ( g  e.  _V  |->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) ) ) )
7 dmeq 4624 . . . . . 6  |-  ( g  =  ( rec ( F ,  A )  |`  B )  ->  dom  g  =  dom  ( rec ( F ,  A
)  |`  B ) )
8 onss 4300 . . . . . . . . 9  |-  ( B  e.  On  ->  B  C_  On )
983ad2ant3 966 . . . . . . . 8  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  B  C_  On )
10 rdgifnon 6126 . . . . . . . . . 10  |-  ( ( F  Fn  _V  /\  A  e.  V )  ->  rec ( F ,  A )  Fn  On )
11 fndm 5099 . . . . . . . . . 10  |-  ( rec ( F ,  A
)  Fn  On  ->  dom 
rec ( F ,  A )  =  On )
1210, 11syl 14 . . . . . . . . 9  |-  ( ( F  Fn  _V  /\  A  e.  V )  ->  dom  rec ( F ,  A )  =  On )
13123adant3 963 . . . . . . . 8  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  dom  rec ( F ,  A )  =  On )
149, 13sseqtr4d 3061 . . . . . . 7  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  B  C_  dom  rec ( F ,  A )
)
15 ssdmres 4722 . . . . . . 7  |-  ( B 
C_  dom  rec ( F ,  A )  <->  dom  ( rec ( F ,  A )  |`  B )  =  B )
1614, 15sylib 120 . . . . . 6  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  dom  ( rec ( F ,  A )  |`  B )  =  B )
177, 16sylan9eqr 2142 . . . . 5  |-  ( ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  /\  g  =  ( rec ( F ,  A
)  |`  B ) )  ->  dom  g  =  B )
18 fveq1 5288 . . . . . . 7  |-  ( g  =  ( rec ( F ,  A )  |`  B )  ->  (
g `  x )  =  ( ( rec ( F ,  A
)  |`  B ) `  x ) )
1918fveq2d 5293 . . . . . 6  |-  ( g  =  ( rec ( F ,  A )  |`  B )  ->  ( F `  ( g `  x ) )  =  ( F `  (
( rec ( F ,  A )  |`  B ) `  x
) ) )
2019adantl 271 . . . . 5  |-  ( ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  /\  g  =  ( rec ( F ,  A
)  |`  B ) )  ->  ( F `  ( g `  x
) )  =  ( F `  ( ( rec ( F ,  A )  |`  B ) `
 x ) ) )
2117, 20iuneq12d 3749 . . . 4  |-  ( ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  /\  g  =  ( rec ( F ,  A
)  |`  B ) )  ->  U_ x  e.  dom  g ( F `  ( g `  x
) )  =  U_ x  e.  B  ( F `  ( ( rec ( F ,  A
)  |`  B ) `  x ) ) )
2221uneq2d 3152 . . 3  |-  ( ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  /\  g  =  ( rec ( F ,  A
)  |`  B ) )  ->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) )  =  ( A  u.  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `  x
) ) ) )
23 rdgfun 6120 . . . . 5  |-  Fun  rec ( F ,  A )
24 resfunexg 5500 . . . . 5  |-  ( ( Fun  rec ( F ,  A )  /\  B  e.  On )  ->  ( rec ( F ,  A )  |`  B )  e.  _V )
2523, 24mpan 415 . . . 4  |-  ( B  e.  On  ->  ( rec ( F ,  A
)  |`  B )  e. 
_V )
26253ad2ant3 966 . . 3  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  A )  |`  B )  e.  _V )
27 simpr 108 . . . . . 6  |-  ( ( F  Fn  _V  /\  B  e.  On )  ->  B  e.  On )
28 vex 2622 . . . . . . . . . 10  |-  x  e. 
_V
29 fvexg 5308 . . . . . . . . . 10  |-  ( ( ( rec ( F ,  A )  |`  B )  e.  _V  /\  x  e.  _V )  ->  ( ( rec ( F ,  A )  |`  B ) `  x
)  e.  _V )
3025, 28, 29sylancl 404 . . . . . . . . 9  |-  ( B  e.  On  ->  (
( rec ( F ,  A )  |`  B ) `  x
)  e.  _V )
3130ralrimivw 2447 . . . . . . . 8  |-  ( B  e.  On  ->  A. x  e.  B  ( ( rec ( F ,  A
)  |`  B ) `  x )  e.  _V )
3231adantl 271 . . . . . . 7  |-  ( ( F  Fn  _V  /\  B  e.  On )  ->  A. x  e.  B  ( ( rec ( F ,  A )  |`  B ) `  x
)  e.  _V )
33 funfvex 5306 . . . . . . . . . . 11  |-  ( ( Fun  F  /\  (
( rec ( F ,  A )  |`  B ) `  x
)  e.  dom  F
)  ->  ( F `  ( ( rec ( F ,  A )  |`  B ) `  x
) )  e.  _V )
3433funfni 5100 . . . . . . . . . 10  |-  ( ( F  Fn  _V  /\  ( ( rec ( F ,  A )  |`  B ) `  x
)  e.  _V )  ->  ( F `  (
( rec ( F ,  A )  |`  B ) `  x
) )  e.  _V )
3534ex 113 . . . . . . . . 9  |-  ( F  Fn  _V  ->  (
( ( rec ( F ,  A )  |`  B ) `  x
)  e.  _V  ->  ( F `  ( ( rec ( F ,  A )  |`  B ) `
 x ) )  e.  _V ) )
3635ralimdv 2442 . . . . . . . 8  |-  ( F  Fn  _V  ->  ( A. x  e.  B  ( ( rec ( F ,  A )  |`  B ) `  x
)  e.  _V  ->  A. x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `
 x ) )  e.  _V ) )
3736adantr 270 . . . . . . 7  |-  ( ( F  Fn  _V  /\  B  e.  On )  ->  ( A. x  e.  B  ( ( rec ( F ,  A
)  |`  B ) `  x )  e.  _V  ->  A. x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `
 x ) )  e.  _V ) )
3832, 37mpd 13 . . . . . 6  |-  ( ( F  Fn  _V  /\  B  e.  On )  ->  A. x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `
 x ) )  e.  _V )
39 iunexg 5872 . . . . . 6  |-  ( ( B  e.  On  /\  A. x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `
 x ) )  e.  _V )  ->  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `
 x ) )  e.  _V )
4027, 38, 39syl2anc 403 . . . . 5  |-  ( ( F  Fn  _V  /\  B  e.  On )  ->  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `
 x ) )  e.  _V )
41403adant2 962 . . . 4  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `
 x ) )  e.  _V )
42 unexg 4259 . . . . . 6  |-  ( ( A  e.  V  /\  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `
 x ) )  e.  _V )  -> 
( A  u.  U_ x  e.  B  ( F `  ( ( rec ( F ,  A
)  |`  B ) `  x ) ) )  e.  _V )
4342ex 113 . . . . 5  |-  ( A  e.  V  ->  ( U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `
 x ) )  e.  _V  ->  ( A  u.  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `  x
) ) )  e. 
_V ) )
44433ad2ant2 965 . . . 4  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `  x
) )  e.  _V  ->  ( A  u.  U_ x  e.  B  ( F `  ( ( rec ( F ,  A
)  |`  B ) `  x ) ) )  e.  _V ) )
4541, 44mpd 13 . . 3  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( A  u.  U_ x  e.  B  ( F `  ( ( rec ( F ,  A
)  |`  B ) `  x ) ) )  e.  _V )
466, 22, 26, 45fvmptd 5369 . 2  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) `  ( rec ( F ,  A )  |`  B ) )  =  ( A  u.  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `  x
) ) ) )
475, 46eqtrd 2120 1  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  A ) `  B )  =  ( A  u.  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `  x
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 924    = wceq 1289    e. wcel 1438   A.wral 2359   _Vcvv 2619    u. cun 2995    C_ wss 2997   U_ciun 3725    |-> cmpt 3891   Oncon0 4181   dom cdm 4428    |` cres 4430   Fun wfun 4996    Fn wfn 4997   ` cfv 5002   reccrdg 6116
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-iord 4184  df-on 4186  df-suc 4189  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-recs 6052  df-irdg 6117
This theorem is referenced by:  rdgival  6129
  Copyright terms: Public domain W3C validator