ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgivallem Unicode version

Theorem rdgivallem 6490
Description: Value of the recursive definition generator. Lemma for rdgival 6491 which simplifies the value further. (Contributed by Jim Kingdon, 13-Jul-2019.) (New usage is discouraged.)
Assertion
Ref Expression
rdgivallem  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  A ) `  B )  =  ( A  u.  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `  x
) ) ) )
Distinct variable groups:    x, A    x, B    x, F    x, V

Proof of Theorem rdgivallem
Dummy variables  g  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-irdg 6479 . . . 4  |-  rec ( F ,  A )  = recs ( ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) )
2 rdgruledefgg 6484 . . . . 5  |-  ( ( F  Fn  _V  /\  A  e.  V )  ->  ( Fun  ( g  e.  _V  |->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) ) )  /\  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  y )  e.  _V ) )
32alrimiv 1898 . . . 4  |-  ( ( F  Fn  _V  /\  A  e.  V )  ->  A. y ( Fun  ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )  /\  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  y )  e.  _V ) )
41, 3tfri2d 6445 . . 3  |-  ( ( ( F  Fn  _V  /\  A  e.  V )  /\  B  e.  On )  ->  ( rec ( F ,  A ) `  B )  =  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  ( rec ( F ,  A
)  |`  B ) ) )
543impa 1197 . 2  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  A ) `  B )  =  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  ( rec ( F ,  A
)  |`  B ) ) )
6 eqidd 2208 . . 3  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )  =  ( g  e.  _V  |->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) ) ) )
7 dmeq 4897 . . . . . 6  |-  ( g  =  ( rec ( F ,  A )  |`  B )  ->  dom  g  =  dom  ( rec ( F ,  A
)  |`  B ) )
8 onss 4559 . . . . . . . . 9  |-  ( B  e.  On  ->  B  C_  On )
983ad2ant3 1023 . . . . . . . 8  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  B  C_  On )
10 rdgifnon 6488 . . . . . . . . . 10  |-  ( ( F  Fn  _V  /\  A  e.  V )  ->  rec ( F ,  A )  Fn  On )
11 fndm 5392 . . . . . . . . . 10  |-  ( rec ( F ,  A
)  Fn  On  ->  dom 
rec ( F ,  A )  =  On )
1210, 11syl 14 . . . . . . . . 9  |-  ( ( F  Fn  _V  /\  A  e.  V )  ->  dom  rec ( F ,  A )  =  On )
13123adant3 1020 . . . . . . . 8  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  dom  rec ( F ,  A )  =  On )
149, 13sseqtrrd 3240 . . . . . . 7  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  B  C_  dom  rec ( F ,  A )
)
15 ssdmres 5000 . . . . . . 7  |-  ( B 
C_  dom  rec ( F ,  A )  <->  dom  ( rec ( F ,  A )  |`  B )  =  B )
1614, 15sylib 122 . . . . . 6  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  dom  ( rec ( F ,  A )  |`  B )  =  B )
177, 16sylan9eqr 2262 . . . . 5  |-  ( ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  /\  g  =  ( rec ( F ,  A
)  |`  B ) )  ->  dom  g  =  B )
18 fveq1 5598 . . . . . . 7  |-  ( g  =  ( rec ( F ,  A )  |`  B )  ->  (
g `  x )  =  ( ( rec ( F ,  A
)  |`  B ) `  x ) )
1918fveq2d 5603 . . . . . 6  |-  ( g  =  ( rec ( F ,  A )  |`  B )  ->  ( F `  ( g `  x ) )  =  ( F `  (
( rec ( F ,  A )  |`  B ) `  x
) ) )
2019adantl 277 . . . . 5  |-  ( ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  /\  g  =  ( rec ( F ,  A
)  |`  B ) )  ->  ( F `  ( g `  x
) )  =  ( F `  ( ( rec ( F ,  A )  |`  B ) `
 x ) ) )
2117, 20iuneq12d 3965 . . . 4  |-  ( ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  /\  g  =  ( rec ( F ,  A
)  |`  B ) )  ->  U_ x  e.  dom  g ( F `  ( g `  x
) )  =  U_ x  e.  B  ( F `  ( ( rec ( F ,  A
)  |`  B ) `  x ) ) )
2221uneq2d 3335 . . 3  |-  ( ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  /\  g  =  ( rec ( F ,  A
)  |`  B ) )  ->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) )  =  ( A  u.  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `  x
) ) ) )
23 rdgfun 6482 . . . . 5  |-  Fun  rec ( F ,  A )
24 resfunexg 5828 . . . . 5  |-  ( ( Fun  rec ( F ,  A )  /\  B  e.  On )  ->  ( rec ( F ,  A )  |`  B )  e.  _V )
2523, 24mpan 424 . . . 4  |-  ( B  e.  On  ->  ( rec ( F ,  A
)  |`  B )  e. 
_V )
26253ad2ant3 1023 . . 3  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  A )  |`  B )  e.  _V )
27 simpr 110 . . . . . 6  |-  ( ( F  Fn  _V  /\  B  e.  On )  ->  B  e.  On )
28 vex 2779 . . . . . . . . . 10  |-  x  e. 
_V
29 fvexg 5618 . . . . . . . . . 10  |-  ( ( ( rec ( F ,  A )  |`  B )  e.  _V  /\  x  e.  _V )  ->  ( ( rec ( F ,  A )  |`  B ) `  x
)  e.  _V )
3025, 28, 29sylancl 413 . . . . . . . . 9  |-  ( B  e.  On  ->  (
( rec ( F ,  A )  |`  B ) `  x
)  e.  _V )
3130ralrimivw 2582 . . . . . . . 8  |-  ( B  e.  On  ->  A. x  e.  B  ( ( rec ( F ,  A
)  |`  B ) `  x )  e.  _V )
3231adantl 277 . . . . . . 7  |-  ( ( F  Fn  _V  /\  B  e.  On )  ->  A. x  e.  B  ( ( rec ( F ,  A )  |`  B ) `  x
)  e.  _V )
33 funfvex 5616 . . . . . . . . . . 11  |-  ( ( Fun  F  /\  (
( rec ( F ,  A )  |`  B ) `  x
)  e.  dom  F
)  ->  ( F `  ( ( rec ( F ,  A )  |`  B ) `  x
) )  e.  _V )
3433funfni 5395 . . . . . . . . . 10  |-  ( ( F  Fn  _V  /\  ( ( rec ( F ,  A )  |`  B ) `  x
)  e.  _V )  ->  ( F `  (
( rec ( F ,  A )  |`  B ) `  x
) )  e.  _V )
3534ex 115 . . . . . . . . 9  |-  ( F  Fn  _V  ->  (
( ( rec ( F ,  A )  |`  B ) `  x
)  e.  _V  ->  ( F `  ( ( rec ( F ,  A )  |`  B ) `
 x ) )  e.  _V ) )
3635ralimdv 2576 . . . . . . . 8  |-  ( F  Fn  _V  ->  ( A. x  e.  B  ( ( rec ( F ,  A )  |`  B ) `  x
)  e.  _V  ->  A. x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `
 x ) )  e.  _V ) )
3736adantr 276 . . . . . . 7  |-  ( ( F  Fn  _V  /\  B  e.  On )  ->  ( A. x  e.  B  ( ( rec ( F ,  A
)  |`  B ) `  x )  e.  _V  ->  A. x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `
 x ) )  e.  _V ) )
3832, 37mpd 13 . . . . . 6  |-  ( ( F  Fn  _V  /\  B  e.  On )  ->  A. x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `
 x ) )  e.  _V )
39 iunexg 6227 . . . . . 6  |-  ( ( B  e.  On  /\  A. x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `
 x ) )  e.  _V )  ->  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `
 x ) )  e.  _V )
4027, 38, 39syl2anc 411 . . . . 5  |-  ( ( F  Fn  _V  /\  B  e.  On )  ->  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `
 x ) )  e.  _V )
41403adant2 1019 . . . 4  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `
 x ) )  e.  _V )
42 unexg 4508 . . . . . 6  |-  ( ( A  e.  V  /\  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `
 x ) )  e.  _V )  -> 
( A  u.  U_ x  e.  B  ( F `  ( ( rec ( F ,  A
)  |`  B ) `  x ) ) )  e.  _V )
4342ex 115 . . . . 5  |-  ( A  e.  V  ->  ( U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `
 x ) )  e.  _V  ->  ( A  u.  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `  x
) ) )  e. 
_V ) )
44433ad2ant2 1022 . . . 4  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `  x
) )  e.  _V  ->  ( A  u.  U_ x  e.  B  ( F `  ( ( rec ( F ,  A
)  |`  B ) `  x ) ) )  e.  _V ) )
4541, 44mpd 13 . . 3  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( A  u.  U_ x  e.  B  ( F `  ( ( rec ( F ,  A
)  |`  B ) `  x ) ) )  e.  _V )
466, 22, 26, 45fvmptd 5683 . 2  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) `  ( rec ( F ,  A )  |`  B ) )  =  ( A  u.  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `  x
) ) ) )
475, 46eqtrd 2240 1  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  A ) `  B )  =  ( A  u.  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `  x
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2178   A.wral 2486   _Vcvv 2776    u. cun 3172    C_ wss 3174   U_ciun 3941    |-> cmpt 4121   Oncon0 4428   dom cdm 4693    |` cres 4695   Fun wfun 5284    Fn wfn 5285   ` cfv 5290   reccrdg 6478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-recs 6414  df-irdg 6479
This theorem is referenced by:  rdgival  6491
  Copyright terms: Public domain W3C validator