Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rdgivallem | Unicode version |
Description: Value of the recursive definition generator. Lemma for rdgival 6350 which simplifies the value further. (Contributed by Jim Kingdon, 13-Jul-2019.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rdgivallem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-irdg 6338 | . . . 4 recs | |
2 | rdgruledefgg 6343 | . . . . 5 | |
3 | 2 | alrimiv 1862 | . . . 4 |
4 | 1, 3 | tfri2d 6304 | . . 3 |
5 | 4 | 3impa 1184 | . 2 |
6 | eqidd 2166 | . . 3 | |
7 | dmeq 4804 | . . . . . 6 | |
8 | onss 4470 | . . . . . . . . 9 | |
9 | 8 | 3ad2ant3 1010 | . . . . . . . 8 |
10 | rdgifnon 6347 | . . . . . . . . . 10 | |
11 | fndm 5287 | . . . . . . . . . 10 | |
12 | 10, 11 | syl 14 | . . . . . . . . 9 |
13 | 12 | 3adant3 1007 | . . . . . . . 8 |
14 | 9, 13 | sseqtrrd 3181 | . . . . . . 7 |
15 | ssdmres 4906 | . . . . . . 7 | |
16 | 14, 15 | sylib 121 | . . . . . 6 |
17 | 7, 16 | sylan9eqr 2221 | . . . . 5 |
18 | fveq1 5485 | . . . . . . 7 | |
19 | 18 | fveq2d 5490 | . . . . . 6 |
20 | 19 | adantl 275 | . . . . 5 |
21 | 17, 20 | iuneq12d 3890 | . . . 4 |
22 | 21 | uneq2d 3276 | . . 3 |
23 | rdgfun 6341 | . . . . 5 | |
24 | resfunexg 5706 | . . . . 5 | |
25 | 23, 24 | mpan 421 | . . . 4 |
26 | 25 | 3ad2ant3 1010 | . . 3 |
27 | simpr 109 | . . . . . 6 | |
28 | vex 2729 | . . . . . . . . . 10 | |
29 | fvexg 5505 | . . . . . . . . . 10 | |
30 | 25, 28, 29 | sylancl 410 | . . . . . . . . 9 |
31 | 30 | ralrimivw 2540 | . . . . . . . 8 |
32 | 31 | adantl 275 | . . . . . . 7 |
33 | funfvex 5503 | . . . . . . . . . . 11 | |
34 | 33 | funfni 5288 | . . . . . . . . . 10 |
35 | 34 | ex 114 | . . . . . . . . 9 |
36 | 35 | ralimdv 2534 | . . . . . . . 8 |
37 | 36 | adantr 274 | . . . . . . 7 |
38 | 32, 37 | mpd 13 | . . . . . 6 |
39 | iunexg 6087 | . . . . . 6 | |
40 | 27, 38, 39 | syl2anc 409 | . . . . 5 |
41 | 40 | 3adant2 1006 | . . . 4 |
42 | unexg 4421 | . . . . . 6 | |
43 | 42 | ex 114 | . . . . 5 |
44 | 43 | 3ad2ant2 1009 | . . . 4 |
45 | 41, 44 | mpd 13 | . . 3 |
46 | 6, 22, 26, 45 | fvmptd 5567 | . 2 |
47 | 5, 46 | eqtrd 2198 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 wral 2444 cvv 2726 cun 3114 wss 3116 ciun 3866 cmpt 4043 con0 4341 cdm 4604 cres 4606 wfun 5182 wfn 5183 cfv 5188 crdg 6337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-recs 6273 df-irdg 6338 |
This theorem is referenced by: rdgival 6350 |
Copyright terms: Public domain | W3C validator |