| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rdgivallem | Unicode version | ||
| Description: Value of the recursive definition generator. Lemma for rdgival 6528 which simplifies the value further. (Contributed by Jim Kingdon, 13-Jul-2019.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| rdgivallem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-irdg 6516 |
. . . 4
| |
| 2 | rdgruledefgg 6521 |
. . . . 5
| |
| 3 | 2 | alrimiv 1920 |
. . . 4
|
| 4 | 1, 3 | tfri2d 6482 |
. . 3
|
| 5 | 4 | 3impa 1218 |
. 2
|
| 6 | eqidd 2230 |
. . 3
| |
| 7 | dmeq 4923 |
. . . . . 6
| |
| 8 | onss 4585 |
. . . . . . . . 9
| |
| 9 | 8 | 3ad2ant3 1044 |
. . . . . . . 8
|
| 10 | rdgifnon 6525 |
. . . . . . . . . 10
| |
| 11 | fndm 5420 |
. . . . . . . . . 10
| |
| 12 | 10, 11 | syl 14 |
. . . . . . . . 9
|
| 13 | 12 | 3adant3 1041 |
. . . . . . . 8
|
| 14 | 9, 13 | sseqtrrd 3263 |
. . . . . . 7
|
| 15 | ssdmres 5027 |
. . . . . . 7
| |
| 16 | 14, 15 | sylib 122 |
. . . . . 6
|
| 17 | 7, 16 | sylan9eqr 2284 |
. . . . 5
|
| 18 | fveq1 5626 |
. . . . . . 7
| |
| 19 | 18 | fveq2d 5631 |
. . . . . 6
|
| 20 | 19 | adantl 277 |
. . . . 5
|
| 21 | 17, 20 | iuneq12d 3989 |
. . . 4
|
| 22 | 21 | uneq2d 3358 |
. . 3
|
| 23 | rdgfun 6519 |
. . . . 5
| |
| 24 | resfunexg 5860 |
. . . . 5
| |
| 25 | 23, 24 | mpan 424 |
. . . 4
|
| 26 | 25 | 3ad2ant3 1044 |
. . 3
|
| 27 | simpr 110 |
. . . . . 6
| |
| 28 | vex 2802 |
. . . . . . . . . 10
| |
| 29 | fvexg 5646 |
. . . . . . . . . 10
| |
| 30 | 25, 28, 29 | sylancl 413 |
. . . . . . . . 9
|
| 31 | 30 | ralrimivw 2604 |
. . . . . . . 8
|
| 32 | 31 | adantl 277 |
. . . . . . 7
|
| 33 | funfvex 5644 |
. . . . . . . . . . 11
| |
| 34 | 33 | funfni 5423 |
. . . . . . . . . 10
|
| 35 | 34 | ex 115 |
. . . . . . . . 9
|
| 36 | 35 | ralimdv 2598 |
. . . . . . . 8
|
| 37 | 36 | adantr 276 |
. . . . . . 7
|
| 38 | 32, 37 | mpd 13 |
. . . . . 6
|
| 39 | iunexg 6264 |
. . . . . 6
| |
| 40 | 27, 38, 39 | syl2anc 411 |
. . . . 5
|
| 41 | 40 | 3adant2 1040 |
. . . 4
|
| 42 | unexg 4534 |
. . . . . 6
| |
| 43 | 42 | ex 115 |
. . . . 5
|
| 44 | 43 | 3ad2ant2 1043 |
. . . 4
|
| 45 | 41, 44 | mpd 13 |
. . 3
|
| 46 | 6, 22, 26, 45 | fvmptd 5715 |
. 2
|
| 47 | 5, 46 | eqtrd 2262 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-recs 6451 df-irdg 6516 |
| This theorem is referenced by: rdgival 6528 |
| Copyright terms: Public domain | W3C validator |