Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rdgivallem | Unicode version |
Description: Value of the recursive definition generator. Lemma for rdgival 6329 which simplifies the value further. (Contributed by Jim Kingdon, 13-Jul-2019.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rdgivallem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-irdg 6317 | . . . 4 recs | |
2 | rdgruledefgg 6322 | . . . . 5 | |
3 | 2 | alrimiv 1854 | . . . 4 |
4 | 1, 3 | tfri2d 6283 | . . 3 |
5 | 4 | 3impa 1177 | . 2 |
6 | eqidd 2158 | . . 3 | |
7 | dmeq 4786 | . . . . . 6 | |
8 | onss 4452 | . . . . . . . . 9 | |
9 | 8 | 3ad2ant3 1005 | . . . . . . . 8 |
10 | rdgifnon 6326 | . . . . . . . . . 10 | |
11 | fndm 5269 | . . . . . . . . . 10 | |
12 | 10, 11 | syl 14 | . . . . . . . . 9 |
13 | 12 | 3adant3 1002 | . . . . . . . 8 |
14 | 9, 13 | sseqtrrd 3167 | . . . . . . 7 |
15 | ssdmres 4888 | . . . . . . 7 | |
16 | 14, 15 | sylib 121 | . . . . . 6 |
17 | 7, 16 | sylan9eqr 2212 | . . . . 5 |
18 | fveq1 5467 | . . . . . . 7 | |
19 | 18 | fveq2d 5472 | . . . . . 6 |
20 | 19 | adantl 275 | . . . . 5 |
21 | 17, 20 | iuneq12d 3873 | . . . 4 |
22 | 21 | uneq2d 3261 | . . 3 |
23 | rdgfun 6320 | . . . . 5 | |
24 | resfunexg 5688 | . . . . 5 | |
25 | 23, 24 | mpan 421 | . . . 4 |
26 | 25 | 3ad2ant3 1005 | . . 3 |
27 | simpr 109 | . . . . . 6 | |
28 | vex 2715 | . . . . . . . . . 10 | |
29 | fvexg 5487 | . . . . . . . . . 10 | |
30 | 25, 28, 29 | sylancl 410 | . . . . . . . . 9 |
31 | 30 | ralrimivw 2531 | . . . . . . . 8 |
32 | 31 | adantl 275 | . . . . . . 7 |
33 | funfvex 5485 | . . . . . . . . . . 11 | |
34 | 33 | funfni 5270 | . . . . . . . . . 10 |
35 | 34 | ex 114 | . . . . . . . . 9 |
36 | 35 | ralimdv 2525 | . . . . . . . 8 |
37 | 36 | adantr 274 | . . . . . . 7 |
38 | 32, 37 | mpd 13 | . . . . . 6 |
39 | iunexg 6067 | . . . . . 6 | |
40 | 27, 38, 39 | syl2anc 409 | . . . . 5 |
41 | 40 | 3adant2 1001 | . . . 4 |
42 | unexg 4403 | . . . . . 6 | |
43 | 42 | ex 114 | . . . . 5 |
44 | 43 | 3ad2ant2 1004 | . . . 4 |
45 | 41, 44 | mpd 13 | . . 3 |
46 | 6, 22, 26, 45 | fvmptd 5549 | . 2 |
47 | 5, 46 | eqtrd 2190 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 963 wceq 1335 wcel 2128 wral 2435 cvv 2712 cun 3100 wss 3102 ciun 3849 cmpt 4025 con0 4323 cdm 4586 cres 4588 wfun 5164 wfn 5165 cfv 5170 crdg 6316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4496 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-iord 4326 df-on 4328 df-suc 4331 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-rn 4597 df-res 4598 df-ima 4599 df-iota 5135 df-fun 5172 df-fn 5173 df-f 5174 df-f1 5175 df-fo 5176 df-f1o 5177 df-fv 5178 df-recs 6252 df-irdg 6317 |
This theorem is referenced by: rdgival 6329 |
Copyright terms: Public domain | W3C validator |