| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rdgivallem | Unicode version | ||
| Description: Value of the recursive definition generator. Lemma for rdgival 6491 which simplifies the value further. (Contributed by Jim Kingdon, 13-Jul-2019.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| rdgivallem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-irdg 6479 |
. . . 4
| |
| 2 | rdgruledefgg 6484 |
. . . . 5
| |
| 3 | 2 | alrimiv 1898 |
. . . 4
|
| 4 | 1, 3 | tfri2d 6445 |
. . 3
|
| 5 | 4 | 3impa 1197 |
. 2
|
| 6 | eqidd 2208 |
. . 3
| |
| 7 | dmeq 4897 |
. . . . . 6
| |
| 8 | onss 4559 |
. . . . . . . . 9
| |
| 9 | 8 | 3ad2ant3 1023 |
. . . . . . . 8
|
| 10 | rdgifnon 6488 |
. . . . . . . . . 10
| |
| 11 | fndm 5392 |
. . . . . . . . . 10
| |
| 12 | 10, 11 | syl 14 |
. . . . . . . . 9
|
| 13 | 12 | 3adant3 1020 |
. . . . . . . 8
|
| 14 | 9, 13 | sseqtrrd 3240 |
. . . . . . 7
|
| 15 | ssdmres 5000 |
. . . . . . 7
| |
| 16 | 14, 15 | sylib 122 |
. . . . . 6
|
| 17 | 7, 16 | sylan9eqr 2262 |
. . . . 5
|
| 18 | fveq1 5598 |
. . . . . . 7
| |
| 19 | 18 | fveq2d 5603 |
. . . . . 6
|
| 20 | 19 | adantl 277 |
. . . . 5
|
| 21 | 17, 20 | iuneq12d 3965 |
. . . 4
|
| 22 | 21 | uneq2d 3335 |
. . 3
|
| 23 | rdgfun 6482 |
. . . . 5
| |
| 24 | resfunexg 5828 |
. . . . 5
| |
| 25 | 23, 24 | mpan 424 |
. . . 4
|
| 26 | 25 | 3ad2ant3 1023 |
. . 3
|
| 27 | simpr 110 |
. . . . . 6
| |
| 28 | vex 2779 |
. . . . . . . . . 10
| |
| 29 | fvexg 5618 |
. . . . . . . . . 10
| |
| 30 | 25, 28, 29 | sylancl 413 |
. . . . . . . . 9
|
| 31 | 30 | ralrimivw 2582 |
. . . . . . . 8
|
| 32 | 31 | adantl 277 |
. . . . . . 7
|
| 33 | funfvex 5616 |
. . . . . . . . . . 11
| |
| 34 | 33 | funfni 5395 |
. . . . . . . . . 10
|
| 35 | 34 | ex 115 |
. . . . . . . . 9
|
| 36 | 35 | ralimdv 2576 |
. . . . . . . 8
|
| 37 | 36 | adantr 276 |
. . . . . . 7
|
| 38 | 32, 37 | mpd 13 |
. . . . . 6
|
| 39 | iunexg 6227 |
. . . . . 6
| |
| 40 | 27, 38, 39 | syl2anc 411 |
. . . . 5
|
| 41 | 40 | 3adant2 1019 |
. . . 4
|
| 42 | unexg 4508 |
. . . . . 6
| |
| 43 | 42 | ex 115 |
. . . . 5
|
| 44 | 43 | 3ad2ant2 1022 |
. . . 4
|
| 45 | 41, 44 | mpd 13 |
. . 3
|
| 46 | 6, 22, 26, 45 | fvmptd 5683 |
. 2
|
| 47 | 5, 46 | eqtrd 2240 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-recs 6414 df-irdg 6479 |
| This theorem is referenced by: rdgival 6491 |
| Copyright terms: Public domain | W3C validator |