ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgivallem Unicode version

Theorem rdgivallem 6436
Description: Value of the recursive definition generator. Lemma for rdgival 6437 which simplifies the value further. (Contributed by Jim Kingdon, 13-Jul-2019.) (New usage is discouraged.)
Assertion
Ref Expression
rdgivallem  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  A ) `  B )  =  ( A  u.  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `  x
) ) ) )
Distinct variable groups:    x, A    x, B    x, F    x, V

Proof of Theorem rdgivallem
Dummy variables  g  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-irdg 6425 . . . 4  |-  rec ( F ,  A )  = recs ( ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) )
2 rdgruledefgg 6430 . . . . 5  |-  ( ( F  Fn  _V  /\  A  e.  V )  ->  ( Fun  ( g  e.  _V  |->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) ) )  /\  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  y )  e.  _V ) )
32alrimiv 1885 . . . 4  |-  ( ( F  Fn  _V  /\  A  e.  V )  ->  A. y ( Fun  ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )  /\  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  y )  e.  _V ) )
41, 3tfri2d 6391 . . 3  |-  ( ( ( F  Fn  _V  /\  A  e.  V )  /\  B  e.  On )  ->  ( rec ( F ,  A ) `  B )  =  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  ( rec ( F ,  A
)  |`  B ) ) )
543impa 1196 . 2  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  A ) `  B )  =  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  ( rec ( F ,  A
)  |`  B ) ) )
6 eqidd 2194 . . 3  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )  =  ( g  e.  _V  |->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) ) ) )
7 dmeq 4863 . . . . . 6  |-  ( g  =  ( rec ( F ,  A )  |`  B )  ->  dom  g  =  dom  ( rec ( F ,  A
)  |`  B ) )
8 onss 4526 . . . . . . . . 9  |-  ( B  e.  On  ->  B  C_  On )
983ad2ant3 1022 . . . . . . . 8  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  B  C_  On )
10 rdgifnon 6434 . . . . . . . . . 10  |-  ( ( F  Fn  _V  /\  A  e.  V )  ->  rec ( F ,  A )  Fn  On )
11 fndm 5354 . . . . . . . . . 10  |-  ( rec ( F ,  A
)  Fn  On  ->  dom 
rec ( F ,  A )  =  On )
1210, 11syl 14 . . . . . . . . 9  |-  ( ( F  Fn  _V  /\  A  e.  V )  ->  dom  rec ( F ,  A )  =  On )
13123adant3 1019 . . . . . . . 8  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  dom  rec ( F ,  A )  =  On )
149, 13sseqtrrd 3219 . . . . . . 7  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  B  C_  dom  rec ( F ,  A )
)
15 ssdmres 4965 . . . . . . 7  |-  ( B 
C_  dom  rec ( F ,  A )  <->  dom  ( rec ( F ,  A )  |`  B )  =  B )
1614, 15sylib 122 . . . . . 6  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  dom  ( rec ( F ,  A )  |`  B )  =  B )
177, 16sylan9eqr 2248 . . . . 5  |-  ( ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  /\  g  =  ( rec ( F ,  A
)  |`  B ) )  ->  dom  g  =  B )
18 fveq1 5554 . . . . . . 7  |-  ( g  =  ( rec ( F ,  A )  |`  B )  ->  (
g `  x )  =  ( ( rec ( F ,  A
)  |`  B ) `  x ) )
1918fveq2d 5559 . . . . . 6  |-  ( g  =  ( rec ( F ,  A )  |`  B )  ->  ( F `  ( g `  x ) )  =  ( F `  (
( rec ( F ,  A )  |`  B ) `  x
) ) )
2019adantl 277 . . . . 5  |-  ( ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  /\  g  =  ( rec ( F ,  A
)  |`  B ) )  ->  ( F `  ( g `  x
) )  =  ( F `  ( ( rec ( F ,  A )  |`  B ) `
 x ) ) )
2117, 20iuneq12d 3937 . . . 4  |-  ( ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  /\  g  =  ( rec ( F ,  A
)  |`  B ) )  ->  U_ x  e.  dom  g ( F `  ( g `  x
) )  =  U_ x  e.  B  ( F `  ( ( rec ( F ,  A
)  |`  B ) `  x ) ) )
2221uneq2d 3314 . . 3  |-  ( ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  /\  g  =  ( rec ( F ,  A
)  |`  B ) )  ->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) )  =  ( A  u.  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `  x
) ) ) )
23 rdgfun 6428 . . . . 5  |-  Fun  rec ( F ,  A )
24 resfunexg 5780 . . . . 5  |-  ( ( Fun  rec ( F ,  A )  /\  B  e.  On )  ->  ( rec ( F ,  A )  |`  B )  e.  _V )
2523, 24mpan 424 . . . 4  |-  ( B  e.  On  ->  ( rec ( F ,  A
)  |`  B )  e. 
_V )
26253ad2ant3 1022 . . 3  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  A )  |`  B )  e.  _V )
27 simpr 110 . . . . . 6  |-  ( ( F  Fn  _V  /\  B  e.  On )  ->  B  e.  On )
28 vex 2763 . . . . . . . . . 10  |-  x  e. 
_V
29 fvexg 5574 . . . . . . . . . 10  |-  ( ( ( rec ( F ,  A )  |`  B )  e.  _V  /\  x  e.  _V )  ->  ( ( rec ( F ,  A )  |`  B ) `  x
)  e.  _V )
3025, 28, 29sylancl 413 . . . . . . . . 9  |-  ( B  e.  On  ->  (
( rec ( F ,  A )  |`  B ) `  x
)  e.  _V )
3130ralrimivw 2568 . . . . . . . 8  |-  ( B  e.  On  ->  A. x  e.  B  ( ( rec ( F ,  A
)  |`  B ) `  x )  e.  _V )
3231adantl 277 . . . . . . 7  |-  ( ( F  Fn  _V  /\  B  e.  On )  ->  A. x  e.  B  ( ( rec ( F ,  A )  |`  B ) `  x
)  e.  _V )
33 funfvex 5572 . . . . . . . . . . 11  |-  ( ( Fun  F  /\  (
( rec ( F ,  A )  |`  B ) `  x
)  e.  dom  F
)  ->  ( F `  ( ( rec ( F ,  A )  |`  B ) `  x
) )  e.  _V )
3433funfni 5355 . . . . . . . . . 10  |-  ( ( F  Fn  _V  /\  ( ( rec ( F ,  A )  |`  B ) `  x
)  e.  _V )  ->  ( F `  (
( rec ( F ,  A )  |`  B ) `  x
) )  e.  _V )
3534ex 115 . . . . . . . . 9  |-  ( F  Fn  _V  ->  (
( ( rec ( F ,  A )  |`  B ) `  x
)  e.  _V  ->  ( F `  ( ( rec ( F ,  A )  |`  B ) `
 x ) )  e.  _V ) )
3635ralimdv 2562 . . . . . . . 8  |-  ( F  Fn  _V  ->  ( A. x  e.  B  ( ( rec ( F ,  A )  |`  B ) `  x
)  e.  _V  ->  A. x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `
 x ) )  e.  _V ) )
3736adantr 276 . . . . . . 7  |-  ( ( F  Fn  _V  /\  B  e.  On )  ->  ( A. x  e.  B  ( ( rec ( F ,  A
)  |`  B ) `  x )  e.  _V  ->  A. x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `
 x ) )  e.  _V ) )
3832, 37mpd 13 . . . . . 6  |-  ( ( F  Fn  _V  /\  B  e.  On )  ->  A. x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `
 x ) )  e.  _V )
39 iunexg 6173 . . . . . 6  |-  ( ( B  e.  On  /\  A. x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `
 x ) )  e.  _V )  ->  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `
 x ) )  e.  _V )
4027, 38, 39syl2anc 411 . . . . 5  |-  ( ( F  Fn  _V  /\  B  e.  On )  ->  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `
 x ) )  e.  _V )
41403adant2 1018 . . . 4  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `
 x ) )  e.  _V )
42 unexg 4475 . . . . . 6  |-  ( ( A  e.  V  /\  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `
 x ) )  e.  _V )  -> 
( A  u.  U_ x  e.  B  ( F `  ( ( rec ( F ,  A
)  |`  B ) `  x ) ) )  e.  _V )
4342ex 115 . . . . 5  |-  ( A  e.  V  ->  ( U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `
 x ) )  e.  _V  ->  ( A  u.  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `  x
) ) )  e. 
_V ) )
44433ad2ant2 1021 . . . 4  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `  x
) )  e.  _V  ->  ( A  u.  U_ x  e.  B  ( F `  ( ( rec ( F ,  A
)  |`  B ) `  x ) ) )  e.  _V ) )
4541, 44mpd 13 . . 3  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( A  u.  U_ x  e.  B  ( F `  ( ( rec ( F ,  A
)  |`  B ) `  x ) ) )  e.  _V )
466, 22, 26, 45fvmptd 5639 . 2  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) `  ( rec ( F ,  A )  |`  B ) )  =  ( A  u.  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `  x
) ) ) )
475, 46eqtrd 2226 1  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  A ) `  B )  =  ( A  u.  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `  x
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   _Vcvv 2760    u. cun 3152    C_ wss 3154   U_ciun 3913    |-> cmpt 4091   Oncon0 4395   dom cdm 4660    |` cres 4662   Fun wfun 5249    Fn wfn 5250   ` cfv 5255   reccrdg 6424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-recs 6360  df-irdg 6425
This theorem is referenced by:  rdgival  6437
  Copyright terms: Public domain W3C validator